
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2006

Secure execution environments through
reconfigurable lightweight cryptographic
components
Mahadevan Gomathisankaran
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University
Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University
Digital Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Gomathisankaran, Mahadevan, "Secure execution environments through reconfigurable lightweight cryptographic components "
(2006). Retrospective Theses and Dissertations. 1256.
https://lib.dr.iastate.edu/rtd/1256

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F1256&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Frtd%2F1256&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F1256&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F1256&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Frtd%2F1256&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F1256&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=lib.dr.iastate.edu%2Frtd%2F1256&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/1256?utm_source=lib.dr.iastate.edu%2Frtd%2F1256&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Secure execution environments through

reconfigurable lightweight cryptographic components

by

Mahadevan Gomathisankaran

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Computer Engineering

Program of Study Committee:
Akhilesh Tyagi, Major Professor

Soma Chaudhuri
Thomas Daniels
Randall Geiger

Zhao Zhang

Iowa State University

Ames, Iowa

2006

Copyright © Mahadevan Gomathisankaran, 2006. All rights reserved.

www.manaraa.com

UMI Number: 3217270

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

UMI
UMI Microform 3217270

Copyright 2006 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

www.manaraa.com

ii

Graduate College
Iowa State University

This is to certify that the doctoral dissertation of

Mahadevan Gomathisankaran

has met the dissertation requirements of Iowa State University

Major Professor

For the Major Program

Signature was redacted for privacy.

Signature was redacted for privacy.

www.manaraa.com

iii

TABLE OF CONTENTS

LIST OF TABLES vi

LIST OF FIGURES vii

CHAPTER 1. OVERVIEW 1

CHAPTER 2. ARC3D: ARCHITECTURE SUPPORT FOR 3D OBFUSCATION 3

2.1 Introduction 3

2.2 The Problem 4

2.3 Previous Research 7

2.3.1 ABYSS 7

2.3.2 TrustNol Cryptoprocessor 7

2.3.3 XOM 8

2.3.4 HIDE 8

2.3.5 Oblivious RAM 9

2.3.6 Dallas Semiconductor 9

2.3.7 Obfuscation 9

2.3.8 Analysis 9

2.4 Proposed Architecture: Arc3D 10

2.4.1 Obfuscation Schema 10

2.4.2 Overall Schema 14

2.4.3 Reconfigurable Bijective Function Unit 15

2.4.4 Obfuscating the Sequence 19

2.4.5 Obfuscating the Contents 20

2.4.6 Obfuscating Temporal Order (Second-Order Address Sequences) 21

www.manaraa.com

iv

2.5 Arc3D in Operation 21

2.5.1 Software Distribution 22

2.5.2 Management of Protected Process 27

2.6 Discussion 33

2.6.1 Assumptions 33

2.6.2 Attack Scenarios 34

2.7 Performance Analysis 36

2.8 Conclusion 38

CHAPTER 3. TIVA: TRUSTED INTEGRITY VERIFICATION ARCHITECTURE 39

3.1 Introduction 39

3.2 The Problem 41

3.3 The Solution 42

3.4 Area and Delay Estimation of RPU 47

3.5 Integrity Verification Architecture 50

3.5.1 XRPU 50

3.5.2 Verification . 50

3.5.3 Overhead Estimation 51

3.6 Discussion 52

3.6.1 Obfuscation Strength of Permutation Function (RPU) 52

3.6.2 Attack Scenarios 55

3.6.3 Flexibility of TIVA 55

3.7 Related Work 56

3.8 Conclusions 57

CHAPTER 4. REBEL: RECONFIGURABLE BLOCK ENCRYPTION LOGIC 59

4.1 Introduction 59

4.2 Preliminaries 60

4.2.1 Notations 60

4.2.2 Properties of Gb
n 61

www.manaraa.com

V

4.3 Function Family F„ 66

4.3.1 Notations 66

4.3.2 Construction of 68

4.3.3 Properties of 70

4.4 REBEL function family R^N 79

4.4.1 Construction of R^N 79

4.4.2 Adversary Models 80

4.4.3 Complexity Analysis (PTRA) 81

4.4.4 Statistical Adversary Advantage 82

4.4.5 Resilience to Cryptanalysis 85

4.4.6 Implementation: 87

4.5 Conclusion 87

CHAPTER 5. CONCLUSION 88

REFERENCES 90

ACKNOWLEDGEMENTS 94

www.manaraa.com

vi

LIST OF TABLES

Table 2.1 Redundancy Estimation (# of Random Configs = 220) 19

Table 2.2 Memory Hierarchy Simulation Parameters 36

Table 2.3 Simulation Results 37

Table 3.1 Area Estimate of RPU 48

Table 3.2 Delay Estimate of RPU 49

Table 3.3 Latency and Area Overhead Estimation of XRPU 52

Table 3.4 Average Obfuscation Strength for 220 Runs 54

Table 4.1 Properties of two instances of R„N 87

www.manaraa.com

vii

LIST OF FIGURES

Figure 2.1 Weakness of HIDE approach 10

Figure 2.2 Overall Schema of Arc3D Architecture 11

Figure 2.3 Static and Dynamic obfuscation 12

Figure 2.4 Reconfigurable Bijective Obfuscation Unit 15

Figure 2.5 Configuration Selection for each LUT 17

Figure 2.6 Three Party Trust Model 22

Figure 2.7 Page Obfuscation Function 24

Figure 2.8 Extended Binary Format 26

Figure 3.1 An Example Hash or Checksum Function J 46

Figure 3.2 A Typical Schema for 5x5-LUT 47

Figure 3.3 Integrity Verification Architecture 49

Figure 3.4 An Example PPC Micro-Code Implementation of J 51

Figure 3.5 An Example Permutation 54

Figure 4.1 Bias Propagation in ra-to-1 Gate 65

Figure 4.2 Diagramatic representation of F 67

Figure 4.3 Diagrammatic representation of F„ 68

Figure 4.4 Construction of F„ and Key (Gate Configuration) Assignment 69

Figure 4.5 One of the Maximum Controllability Paths in F 72

Figure 4.6 Diagrammatic Representation of EK and DK in R^N 80

Figure 4.7 (X,J,K) Neighborhood Bubbles 84

www.manaraa.com

1

CHAPTER 1. OVERVIEW

Software protection is one of the most important problems in the area of computing as it affects a

multitude of players like software vendors, digital content providers, users, and government agencies.

There are multiple dimensions to this broad problem of software protection. The most important ones are

• protecting software from reverse engineering.

• protecting software from tamper (or modification).

• preventing software piracy.

• verification of integrity of the software.

In this thesis we focus on these areas of software protection. The basic requirement to achieve these

goals is to provide a secure execution environment, which ensures that the programs behave in the same

way as it was designed, and the execution platforms respect certain types of wishes specified by the pro­

gram. Industry as well as academic research is moving towards such an approach. Microsoft's heavy

investment in a next generation trusted hardware platform (NGSCB) [42], the recent award by the U.S. Air

Force Research Laboratory of a US$1.8m research contract [18] involving software obfuscation, and the

Trusted Computing Group [52] are samples of the research thrust in this area.

Several approaches have been researched in software-only solutions. Most notables ones are: ob­

fuscation through code transformations [14]; white-box cryptography [13]; software tamper resis­

tance [4]; and software diversity [15]. Any software-only solution to achieve secure executing environ­

ment seems to be inadequate. In the end, in most scenarios, it reduces to the problem of last mile wherein

only if some small kernel of values could be isolated from the OS (as an axiom), the entire schema can be

shown to work. Hence we take the approach of providing secure execution environment through architec­

ture support. We exploit the power of reconfigurable components in achieving this.

www.manaraa.com

2

The first problem we consider is to provide architecture support for obfuscation. This also achieves

the goals of tamper resistance, copy protection, and IP protection indirectly. Earlier solutions to this

problem used full-strength cryptographic primitives, and did not exploit the software specific properties.

Our approach is based on the intuition that the software is a sequence of instructions (and data) and if

the sequence as well the contents are obfuscated then all the required goals can be achieved. We identify

three dimensions of information in a software and provide architectural support to obfuscate all these three

dimensions. Chapter 2 presents a detailed description of the problem and our solution Arc3D.

The second problem we solve is integrity verification of the software particularly in embedded devices.

Earlier solutions [2, 45] failed to identify the relationship between integrity verification problem and IP

protection problem. Our solution is based on the intuition that an obfuscated (permuted) binary image

without any dynamic traces reveals very little information about the IP of the program. Moreover, if this

obfuscation function becomes a shared secret between the verifier and the embedded device then verifica­

tion can be performed in a trustworthy manner. Chapter 3 explains the integrity verification problem and

our solution TIVA in detail.

Cryptographic components form the underlying building blocks/primitives of any secure execution

environment. Our use of reconfigurable components to provide software protection in both Arc3D and

TIVA led us to an interesting observation about the power of reconfigurable components. Reconfigurable

components provide the ability to use the secret (or key) in a much stronger way than the conventional

cryptographic designs [40, 41]. This opened up an opportunity for us to explore the use of reconfigurable

gates to build cryptographic functions.

Chapter 4 explains the proposed encryption, REBEL (REconfigurable Block Encryption Logic), de­

sign and its properties in detail. The advantages of REBEL are manifold. It is a completely new design

paradigm, its hardware implementation is much faster when compared to the existing cryptographic func­

tions, and it allows the use of a much larger secret (key) size than the block size. Since the future computing

platforms essentially will contain some reconfigurable elements this design paradigm could be potentially

beneficial. Even more importantly, REBEL seems to be more robust against cryptanalysis than the tradi­

tional block ciphers, since it uses the secrets more effectively.

www.manaraa.com

3

CHAPTER 2. ARC3D: ARCHITECTURE SUPPORT FOR 3D OBFUSCATION

Software obfuscation is defined as a transformation of a program <P into T{T) such that the white-

box and blackbox behaviors of T(£P) are computationally indistinguishable. However, robust obfuscation

is impossible to achieve with the existing software only solutions. This results from the power of the

adversary model in DRM which is significantly more than in the traditional security scenarios. The ad­

versary has complete control of the computing node - supervisory privileges along with the full physical

as well as architectural object observational capabilities. In essence, this makes the operating system (or

any other layer around the architecture) untrustworthy. Thus the trust has to be provided by the under­

lying architecture. In this thesis, we develop an architecture to support 3-D obfuscation through the use

of well known cryptographic methods. The three dimensional obfuscation hides the address sequencing,

the contents associated with an address, and the temporal reuse of address sequences such as in loops (or

the second order address sequencing). The software is kept as an obfuscated file system image statically.

Moreover, its execution traces are also dynamically obfuscated along all the three dimensions of address

sequencing, contents and second order address sequencing. Such an obfuscation makes it infinitesimally

likely that good tampering points can be detected. This in turn provides with a very good degree of tamper

resistance. With the use of already known software distribution model of ABYSS and XOM, we can also

ensure copy protection. This results in a complete DRM architecture to provide both copy protection and

IP protection.

2.1 Introduction

Digital rights management (DRM) deals with intellectual property (IP) protection and unauthorized

copy protection. Software piracy alone accounted for $13 billion annual loss [11] to the software industry

in 2002. Software digital rights management traditionally consists of watermarking, obfuscation, and

www.manaraa.com

4

tamper-resistance. All of these tasks are made difficult due to the power of adversary. The traditional

security techniques assume the threat to be external. The system itself is not an adversary. This provides

a safe haven or sanctuary for many security solutions. However, in DRM domain, the OS itself is not

trustworthy. On the contrary, OS constitutes the primary and formidable adversary.

Any software-only solution to achieve DRM seems to be inadequate. In the end, in most scenarios,

it reduces to the problem of last mile wherein only if some small kernel of values could be isolated from

the OS (as an axiom), the entire schema can be shown to work. At this point, it is worth noting that even

in the Microsoft's next generation secure computing base (NGSCB) [42], the process isolation from OS

under a less severe adversary model is performed with hardware help. The NGSCB's goal is to protect the

process from the OS corrupted by external attacks by maintaining a parallel OS look-alike called nexus.

The nexus in turn relies upon a hardware Security Support Component (SSC) for performing cryptographic

operations and for securely storing cryptographic keys.

The trusted computing group consisting of AMD, HP, IBM, and Intel among many others is expected

to release trusted platform module (TPM) [52], to provide the SSC. The TPM is designed to provide such a

root of trust for storage, for measurement, and for reporting. Hence, we believe that TPM provides building

blocks for the proposed architecture. However, we identify additional capabilities needed to support robust

3D obfuscation. The proposed architecture obfuscation blocks can absorb TPM functionality (based on

the released TPM 1.2 specifications [53]).

This chapter is organized as follows. Section 2.2 describes the obfuscation problem and its interac­

tion with the existing cryptographic solutions. Section 2.3 discusses earlier proposed research and their

drawbacks. Section 2.4 explains the basic building blocks of Arc3D and provides a high level overview.

Section 2.5 provides operational details of Arc3D system. We describe various attack scenarios in Sec­

tion 2.6. Section 2.7 gives the performance analysis of Arc3D. Section 2.8 concludes the chapter.

2.2 The Problem

In this section, we describe the problem we are addressing in detail. A software image is generated at

the vendors site. This software image is then distributed to the customer through a transaction. Note that

the software has to be generated in a standardized, well known, structure/format so that the OS can read it

www.manaraa.com

5

and load it. The control flow sequence of the generated software instructions ought to be understandable

by the CPU, even if the program image is obfuscated. The customer, who could be an adversary, has access

to everything outside the CPU chip boundaries, including memory of the system and the OS. Additionally,

from copy protection perspective, the vendor would like to associate the software only to the machine/CPU

covered by the purchase transaction. The software should run only in its original form, i.e., as provided by

the vendor. Its tampered forms should not be executable.

The attributes that need to be supported by a DRM system are as follows.

1. Associability of Software to a particular CPU. (copy-protection)

2. Verifi ability of the CPU's authenticity/identity. (copy-protection, IP-protection)

3. Binary file, conforming to a standardized structure, should not reveal any IP of the software through

static analysis based reverse engineering. {IP-protection - static obfuscation)

4. Any modification of the binary file should make the software unusable. {IP-protection - tamper-

resistance)

5. The program execution parameters visible outside CPU should not reveal any IP of the software.

{IP-protection - dynamic obfuscation)

The first two problems are analogous to the real life problem of establishing trust between two parties

followed by secret sharing on a secure encrypted channel. This is a well analyzed problem and solutions

like Pretty Good Privacy (PGP) exist which uses a trusted Certification Authority (CA). This approach

has been used in almost all the earlier research dealing with copy-protection ([56], [34]) and we too will

use a similar approach. Note that the TPM specifications require the establishment of an endorsement key

pair which is also registered with a CA. Furthermore, any number of attestation key pairs can be created to

support trust between the CPU (with this TPM) and other clients (such as software vendors) which can also

be registered with a certifying authority. The TPM specified protocol for creating an attestation identity

also creates a shared secret between the TPM (or the corresponding CPU) and the client (software vendor).

We expect to be able to use this capability of TPM or a similar protocol for copy protection.

www.manaraa.com

6

The third problem requires prevention (minimization) of information leak from the static binary file/image.

This could be viewed as the problem of protecting a message in an untrustworthy channel. One possible

solution is to encrypt the binary file (the solution adopted by XOM [34] and ABYSS [56]). An alternative

approach would recognize that the binary file is a sequence of instructions and data, with an underlying

structure. Static obfuscation ([3, 16]) attempts to exploit a smaller subset of these program level structure

attributes.

The fourth problem requires the binary image to be tamper resistant. Any modifications to the binary

image should be detectable by the hardware. Message Digest, which is a one-way hash of the message

could be used to solve this problem. This once again is a generic solution which is applicable to any

message transaction that does not use any specific properties of a binary image. We rely upon obfuscation

to provide the tamper-resistance in the following way. Tampering gains an advantage for the adversary only

if the properties of the tampering point - the specific instruction or data at that point - are known. However,

obfuscation prevents the adversary from associating program points with specific desirable properties (such

as all the points that have a branch, call sites, to a specific procedure or all the data values that point to

a specific address). Hence most tampering points are randomly derived resulting in the disabling of the

program, which we do not consider to be an advantage to the adversary in the DRM model where the

adversary/end user has already purchased rights to disable the program.

The fifth problem dictates that the CPU not trust anything outside its own trusted perimeter including

any software layer. The problem is simplified by the fact that CPU can halt its operations once it detects any

untrustworthy behavior. The attributes of the application program execution trace space, which the CPU

has to protect, can be thought of as having three dimensions, namely, instructions (content), addresses at

which the instructions are stored (address sequencing), and the temporal sequence of accesses of these

addresses (second-order address sequencing). All of these three dimensions have to be protected in order

to prevent any information leakage. This holds true even for data.

www.manaraa.com

7

2.3 Previous Research

2.3.1 ABYSS

ABYSS [56] is an architecture for protecting the application software. It can be used as a uniform

security service across a range of computing systems. The system contains both protected and unprotected

processes. Protected processes are executed in a protected processor. Protected processor constitutes a

minimal, but complete, computing system. It has sufficient memory to store protected parts of the appli­

cation. It also has non-volatile storage space to store Rights-To-Execute (RTE) attributes of an application.

There exists a supervisor process which ensures the logical and procedural security of the protected pro­

cessor.

Supervisor process handles the decryption of protected process from disk and its loading into RAM.

It also isolates the applications from each other, and from their unprotected parts. "Rights to execute"

contains the privileges of the application and a "Key" to decrypt the application. One-Use tokens are

used to authorize the installation of RTE. The encryption model used is shown in Box 2.1. Where, KA

is the Application key, decided by the software vendor and can be unique for each copy or common for

multiple copies. Ks is the Supervisor key and is the shared secret between software vendor and hardware

manufacturer. Drawbacks of ABYSS include non-scalability and unexplained OS interactions.

KA{ Protected part of application + Tok }
(2.1)

Ks{ RTE + KA }

2.3.2 TrustNol Cryptoprocessor

TrustNol [32] proposes hardware, firmware, OS and key management mechanisms necessary to apply

the cryptoprocessor concept in multitasking OS systems. It contains a protected on-chip memory key

table that can store segment keys. This key table can only be accessed by firmware that is also stored in

protected on-chip memory. Segment descriptors are extended by a new field, which contains the index of

the key used to decrypt it. Each cache line is encrypted with the segment's key and some of the MSB bits

of cache line address. This makes each key unique and hence prevents the cipher instruction search attack.

The memory manager grants any access only if it originates from an instruction in the same segment. This

www.manaraa.com

8

prevents even OS from reading or modifying the cleartext of an encrypted segment and from calling parts of

the code in an uncontrolled fashion. Box 2.2 lists the special operations supported by the cryptoprocessor.

savestate —> store CPU state

restore Mate —+ restore CPU state

transfer Mate —» copy current CPU state

supervisor-call —> execute system calls

(2.2)

2.3.3 XOM

XOM [34] is based on compartmentalized - a process in one compartment cannot access data from an­

other compartment - machine. Application is encrypted with a symmetric key which in turn is encrypted

with public asymmetric key of XOM. All levels of memory (L2, LI, Registers) are tagged with the session

key ID, specific to the process that is running. XOM stores session keys in the key table. The basic oper­

ations exported by XOM are enter _xom, exit^com, mv Jo.null, mv .from.null, save secure, restore secure,

loadsecure, storesecure, load.from.null, and store.to.null. Using these an OS can manage any protected

process and all the normal operations in an XOM node, except fork of a protected process.

2.3.4 HIDE

HIDE [59] is an extension of XOM. It points out the fact that XOM does not protect the third dimension

of the information space, i.e., the time order of the address trace. Hence even if the instructions (and data)

themselves are obfuscated (through encryption in XOM), the address trace gives the adversary power

to deduce the control flow graph (CFG). HIDE further argues that the information obtained from the

CFG could lead to serious security breaches of the software. HIDE provides a solution to this address

bus leakage problem consisting of chunk-level protection with hardware support and a flexible interface.

Compiler optimizations and user specifications could be further utilized to deploy the underlying hardware

solution more efficiently to provide better security guarantees.

www.manaraa.com

9

2.3.5 Oblivious RAM

Goldreich and Ostrovsky [26] offered one of the first schemes for software protection. They extended

the oblivious Turing machine model to oblivious RAMs. An oblivious RAM presents a memory access

footprint that does not depend on the program input. This prevents information leak about the program

CFG. Oblivious RAM requires 0(yfïn) steps for each original memory access. This is a very high overhead

for present day architectures.

2.3.6 Dallas Semiconductor

DS5002FP [20] is a secure 8-bit microcontroller from Dallas Semiconductor which uses bus-encryption.

The DS5002FP implements three on-chip block-cipher functions EA for 17-bit address-bus encryption, Ep

for 8-bit data-bus encryption , and Ep1 for 8-bit data-bus decryption. The encryption functions are fixed

unless changed by uploading a new secret key. This allows the adversary to build up information by run­

ning the program multiple times and observing its behavior. Kuhn [33] proposed such an attack to extract

the secrets stored in DS5002FP microcontroller.

2.3.7 Obfuscation

We use the term obfuscation in a different way than the earlier literature ([14, 36]). We refer to any

obfuscation mechanism that hides the control flow from static analysis through a binary image or CFG

transformation as static obfuscation. However, these obfuscation mechanisms cannot defeat an adversary

with access to architecturally visible parameters such as memory address bus. Our use of term obfuscation

refers to schemes that hide dynamic execution model parameters as well. Note that in our obfuscation

model, even the instructions themselves can be transformed into potentially invalid ones.

2.3.8 Analysis

Almost all of the earlier research, except HIDE, does not hide the temporal sequencing of memory

accesses. Neither do these solutions exploit the software specific properties. The solution proposed by

HIDE to prevent information leak through the address and memory bus is weak. This is because the

adversary can see the contents of the memory before and after an address-permutation. It is possible

www.manaraa.com

10

Permutation Function

Figure 2.1 Weakness of HIDE approach

because the encryption function applied to the contents is not address dependent. Hence, for instance, if

the contents at two distinct addresses A,- and A;- are also distinct CA,. and CA; then the following information

leak path exists. For a program sequence within a loop, when instructions reoccur at the address and

instruction buses, HIDE permutes the addresses within a page for the second (or subsequent) iteration.

If A, is permuted to a new address TC(A,) the contents at 7t(AZ) would still appear as CA, . Hence a simple

comparison would be able to determine the permutation Jt. Figure 2.1 illustrates this fact. Thus it takes only

N(N+ 1)
comparisons to reverse-engineer the permutation, where N is the permutation size. Assuming

that there are 1024 cache-blocks in a page, the strength of such a permutation is less than 220. Even in the

chunk mode, which performs these permutations in a group of pages, the complexity grows only linearly,

and hence could be easily broken.

The proposed architecture Arc3D addresses all these issues. Moreover, computational efficiency of

proposed methods is a key criterion for inclusion in Arc3D. We make use of software structure to provide

obfuscation and tamper-resistance efficiently.

2.4 Proposed Architecture: Arc3D

The overall Arc3D architecture is shown in Figure 2.2. The main affected components of the microar­

chitecture are the ones that handle virtual-addresses. These components include the translation lookaside

buffer (TLB) and page table entries (PTE). We first describe the objectives of the obfuscation schema.

2.4.1 Obfuscation Schema

The goal of obfuscation is to remove the correlation between

www.manaraa.com

SVKlit,

AK3D
CoMroiler

jMoao y

RSA SUA I

HNCi | .IDliS

www.manaraa.com

12

Address Content

1 H
2 H
3 H

N IN

"s, Cs

Address Content

1 %-(!))
2
3 Cs(4-'(3))

N CS{I, r-^JV))

I'D) CD

Address Content

1
2
3

N

Figure 2.3 Static and Dynamic obfuscation

www.manaraa.com

13

1. the CFG and the static binary image.

2. the static binary image and the dynamic execution image.

Traditional static obfuscation techniques try to obscure disassembling and decompilation stages to remove

the correlation between the static image and the CFG. But these techniques are transparent to architecture

and do not remove the correlation between the static image and the dynamic execution image. Thus an

adversary monitoring the address traces could very well extract the CFG.

We use architecture aware obfuscation of both sequence and content to achieve this goal. A program

is obfuscated both statically and dynamically. The objective of obfuscation is to permute the address se­

quence and to hide the contents (so that the mapping from an address A, to its contents CA, is not obvious).

Let V denote the virtual address sequence {0, 1, 2,..., 232 — 1} for a 32-bit architecture. The classical

static binary image layout maps instructions in the order: /q, /i,..., ̂ 32 _). In other words, contents Ij

are mapped in the virtual address sequence j G V. A static address permutation function n s can be ap­

plied to the binary image so that the instructions in the static binary image appear in the following order:

-fx-i(0)>, ̂ -1(2)' •••) p32-i)• The static address permutation function disperses the jth instruction

in t he v i r t ua l add re s s s equence V, I j , i n to t he s t a t i c s equence number 7 i s (j) -

The contents also need to be obfuscated. A content obfuscation function Cs(I j , j) transforms the

original contents Ij. Note the dependence of the content obfuscation function on the address/sequence

number of the instruction j as well. This makes sure that the contents I (an instruction encoded as I)

will look different when mapped to two distinct sequence numbers j and k. Hence the program will

appear to be in the following sequence after static obfuscation has been applied by the software vendor:

^(^'(l)' 1)' Cs1 (2)i2), • • • i 1 (232_I)'2 — 1)-

The dynamic execution of the program will need to know both the content obfuscation function C$

and the address permutation function When an instruction in the virtual address sequence / € V

needs t o be f e t ched , t he p roces so r wou ld have t o i s sue an add re s s 715 (7) . Le t memory r e tu rn M[%s(j)]

in response to this read. Now the processor would have to deobfuscate the contents as Ç71 (M[ns(j")}-])-

This schema sums up (and generalizes) most permutation based obfuscation schemes. The problem with

this approach though is that an adversary watching the address bus can infer the correct address sequence

for the instructions since both j and 7CS(j) are known for many (or all) instantiated addresses j <E V.

www.manaraa.com

14

Goldreich et al. [26] provide a theoretical solution to this problem which is applicable to a software-

hardware (SH) package. Specifically, it seems to assume a lightweight, embedded operating system which

is not necessarily controlled by the owner of the SH-package.

We propose to perform yet another level of dynamic obfuscation so that address bus visible address

sequence is yet another permutation of the virtual address sequence. Another pair of address permu­

tation and content obfuscation functions which are dynamically chosen, %D and Cy (Ij, j), help achieve

dynamic obfuscation. Hence the static image sequence Cs (/„.-! ̂ ,0), Cs^-i^, 1), Cs(In-i^,2), ...,

CsO^'P32-!)'232 - 0 is actually loaded in the memory as CO(/^I(0);0), CD(In-1(1), 1), Co{I%-I(2),2),

... , Co(/Jt^ip32_1), 232 — 1). Hence it is important that the loading and storing (specifically virtual address

translation) function be taken away from the operating system and be part of a trusted component within the

architecture. This trusted component is also responsible for guarding the program secrets Cs. CD, %s,

Figure 2.3 shows the obfuscation schema in detail.

2.4.2 Overall Schema

As stated earlier, Figure 2.2 shows the global schema for the proposed architecture. The shaded areas

are the additional components of Arc3D over the base architecture. Shading hues also indicate the access

rights as follows. The lightly shaded areas contain information accessible to the outside world, i.e., OS. The

darkly shaded areas contain secret information accessible only to Arc3D. Arc3D has two execution modes,

namely protected and unprotected mode. It has a protected register space REGP which is accessible only

to a protected process.

The core of Arc3D functionality is obfuscation. It is achieved by modifying the virtual-address trans­

lation path - translation look aside buffer (TLB) - of the base architecture. In addition to holding the

virtual-address to physical-address mapping, page table entry (PTE), the TLB has the obfuscation config­

uration (Pconf)• This Pconf is essentially the shared secrets Cs, Co, Tts, Tip in encrypted form. In order to

avoid frequent decryption, Ar3D stores them in decrypted form in Conf section of TLBxp. This section

of TLB is updated whenever a new PTE is loaded into TLBxp. Arc3D assumes parallel address translation

paths for data and instructions, and hence Figure 2.2 shows DTLB and ITLB separately.

The address translation for a protected process occurs in the obfuscation unit. Sections 2.4.4 and 2.4.5

www.manaraa.com

15

explain in detail the address sequence and content obfuscation algorithms respectively. Arc3D uses the

same logic for both static and dynamic obfuscations. The basis of these obfuscations is the permutation

function which is explained in Section 2.4.3. Arc3D has a protected L2 cache, which is accessible only to

a protected process, thus providing temporal order obfuscation.

Arc3D controller provides the following interfaces (APIs) which enable the interactions of a protected

process with the OS.

1. start -prot -process: Allocate the necessary resources and initialize a protected process.

2. exit-prot-process: Free the protected resources allocated for the current protected process.

3. ret-prot-process: Return to the current protected process from an interrupt handler.

4. rest ore-prot-process: Restore a protected process after a context switch.

5. transfer-prot-process: Fork the current protected process.

These APIs and their usage are explained in detail in Section 2.5.

2.4.3 Reconfigurable Bijective Function Unit

Toffoli(5,5) Exchanger(3,3) Toffoli(5,5)

Exchanger(5,5)

Toffoli(5,5) Toffoli(5,5) Exchanger(3,3) Toffoli(5,5)

Exchanger(5,5)

Toffoli(5,5) Toffoli(5,5) Exchanger(3,3) Toffoli(5,5)

Exchanger(5,5)

Toffoli(5,5) Toffoli(5,5) Exchanger(3,3) Toffoli(5,5)

Exchanger(5,5)

Toffoli(5,5) Toffoli(5,5) Exchanger(3,3) Toffoli(5,5)

Exchanger(5,5)

Toffoli(5,5) Toffoli(5,5) Exchanger(3,3) Toffoli(5,5)

Exchanger(5,5)

Toffoli(5,5)

Toffoli(5,5) Exchanger(2,2) Toffoli(5,5)

Exchanger(5,5)

Toffoli(5,5) Toffoli(5,5) Exchanger(2,2) Toffoli(5,5)

Exchanger(5,5)

Toffoli(5,5) Toffoli(5,5) Exchanger(2,2) Toffoli(5,5)

Exchanger(5,5)

Toffoli(5,5) Toffoli(5,5) Exchanger(2,2) Toffoli(5,5)

Exchanger(5,5)

Toffoli(5,5) Toffoli(5,5) Exchanger(2,2) Toffoli(5,5)

Exchanger(5,5)

Toffoli(5,5) Toffoli(5,5) Exchanger(2,2) Toffoli(5,5)

Exchanger(5,5)

Toffoli(5,5)

Figure 2.4 Reconfigurable Bijective Obfuscation Unit

Obfuscation unit is a major component of Arc3D. This unit is responsible for generating bijection

functions %. There are 2"! possible «-bit reversible functions. Reconfigurable logic is well-suited to

generate a large dynamically variable subset of these reversible functions. Figure 2.4 shows one such

schema for permutation of 10 address bits (specifying a page consisting of 1024 cache-blocks). Before

explaining the blocks of Figure 2.4, we observe that there are (22" \ possible functions implemented in a

www.manaraa.com

16

nx n look up table (LUT) or n n-LUTs. But only a subset of them are bijective. We wish to implement

only reversible (conservative) gates ([24], [5]) with LUTs.

Definition 2.4.1. A Toffoli gate, Toffoli(n,n)(C,T), is defined over a support set {x\,x2,as follows.

Let the control set C = {%/i...,%} and the target set T = {x j} be such that C DT = 0. The mapping

is given by

To f fo l i (n ,n) (C , T)[x i ,x2 , . . . , x„] = [x\ ,x 2 , • • • , x j - i , z ,x j + i , . . . ,x n]

where z = x;- © (x;i A XQ A ... A %)-

Definition 2.4.2. Fredkin gate, Fredkin(n,n)(C,T), is defined over a support set {xi,x2,... ,xn} as follows.

Let the control set C = {x,j... .x^} and the target set T = {xy,x;} be such that C(~)T = 0. The

mapping is given by

Fredkin(n,n)(C, T)[XI,X2, • . • , x n] = [xi,x2,. • . ,x j - \ , p ,x j + i , . . . , q , . . . ,x n]

where k = xt\ % % , P = {xj • k) + (x/ • k) , and q = (x j • k) + (x/ • k) .

Both Fredkin [24] and Toffoli [51] have defined classes of reversible gates. We use Toffoli(5,5) gates

with 5-input bits and 5-output bits in our scheme as shown in Figure 2.4. However, we could easily

replace them by Fredkin(5,5) gates. The domain of configurations which can be mapped to each of the

LUTs consists of selections of sets T and C such that T n C = 0. For a support set of 5 variables,

the number of unique reversible Toffoli functions is 4 + 3 + 2 . Each of these terms

captures control sets of size 1,2,3, and 4 respectively. Ignoring control sets of size 1, we get a total of 55

reversible functions. Thus total permutation space covered by all six of these gates is (55)6 % 234. There

are several redundant configurations in this space. We estimate this redundancy later in this section.

The exchanger blocks shown in Figure 2.4 perform a swap operation. It has two sets of inputs and two

sets of outputs. The mapping function is S0k = % if X = 0, and S0/c = % if % = 1, where, % is the

input set, S0k is the output set, X is configuration bit, and & is 0 or 1. Since exchange is also bijective, the

composition of Toffoli gates and exchangers leads to a bijective function with large population diversity.

Other interesting routing structures may also guarantee bijections. But a typical FPGA routing matrix

configuration will require extensive analysis to determine if a given routing configuration is bijective. One

www.manaraa.com

17

point to note here is that we chose to implement a 10 bit permutation function with Toffoli(5,5) gates

instead of a direct implementation of Toffoli(10,10). This is because an «-LUT requires 2" configuration

bits and hence 10-LUTs are impractical in the reconfigurable computing world.

config
TOFFOLI(5,5)

Figure 2.5 Configuration Selection for each LUT

Having fixed the reconfigurable logic to perform the obfuscation (permutation), we need to develop a

schema for the LUT configuration. A simple mechanism would be to store all the 55 possible configura­

tions at each of the LUTs (similar to DPGA of DeHon [21]). In addition to 4 input bits, each LUT will

also have 6 configuration bits to choose from one of the 55 configurations (assuming some configurations

are repeated to fill the 64 locations), as shown in Figure 2.5. In Figure 2.5 A0A1A2A3A4 represent the input

address bits, /o, fi, fi, • • •, h3 represent the 64 configurations, and C0C1C2C3C4C5 represent the configu­

ration bits. Each of the exchanger blocks also requires 1 configuration bit. Thus a total of 39 configuration

bits are needed by the reversible logic of Figure 2.4.

www.manaraa.com

18

2.4.3.1 Estimating Redundancy in Configurations

The most reasonable and efficient way to generate configurations is to generate each configuration bit

independently and randomly. However this process may generate two configurations that represent the

same mapping (from incoming block# to the outgoing block#). Such aliasing reduces the diversity of the

address mapping functions making them more predictable to the adversary. We capture the degree of this

aliasing with the concept of redundancy level of a reconfigurable obfuscation circuit. The redundancy level

can be defined as the fraction of 239 configurations that alias (generate a repeated, non-unique mapping

function).

We assessed the redundancy level of the address permutation schema in Figure 2.4 through the fol­

lowing setup. We simulated this FPGA circuit with 220 randomly generated configurations. For each of

these configurations, we derived the corresponding bijective function by exercising all the 10-bit inputs

sequences. Each unique bijective function was stored. When a bijective function ft from a new random se­

quence from the 220 runs is encountered, it is compared against all the stored bijective functions that have

already been generated. At the end of 220 runs, we end up with k < 220 unique functions ft for 0 < i < k

and their redundancy count r, (function ft occurs in r, of the 220 runs). The redundancy level is computed

as [Lrj>i l]/220. We repeated this experiment several times in order to get a statistical validation of our

experiment. All the values are listed in Table 2.1.

This experiment can be modeled as a random experiment where we have N(=239) balls in a basket

which are either red(-redundant) or green(=non-redundant). We need to estimate the number of red balls

in the basket by picking n(— 220) balls where all the balls are equally likely. We define a random variable

X such that X = 1 if the chosen ball is red and X = 0 otherwise. The mean of such a random variable

is nothing but the redundancy level. We see from Table 2.1 that the mean is close to zero (% 0.3%) and

hence the variance is equal to the mean. Using the variance and mean we estimated the 99% confidence

interval of the mean of X, i.e., the average redundancy level of reconfigurable obfuscation circuit. From

the table, it is clear that with probability 0.99 the average percentage of redundant configurations will lie

within 0.3058 to 0.3444, i.e., only 3 out of 1000 randomly generated configurations will be redundant.

www.manaraa.com

19

Table 2.1 Redundancy Estimation (# of Random Configs = 220)

Random Seed # of Redundant Functions Avg % Redundancy 99% CI

89ABCDEF 3359 0.320 0.3058 to 0.3342

11223344 3409 0.325 0.3107 to 0.3393

12345678 3441 0.328 0.3136 to 0.3424

34567890 3417 0.325 0.3107 to 0.3393

789012345 3469 0.330 0.3156 to 0.3444

8901234567 3460 0.330 0.3156 to 0.3444

56789012345 3460 0.330 0.3156 to 0.3444

2.4.4 Obfuscating the Sequence

We can use the reconfigurable permutation unit defined in Section 2.4.3 to achieve sequence obfusca­

tion. Note, however, that even though we have shown the circuit for a 10-bit permutation, the methodology

is applicable to an arbitrary number of address bits. We believe that at least 10 address bits need to be per­

muted in order to have a reasonably large permutation space. The choice of 10-bits is also dictated by the

structure of the software. Software objects, both instruction and data, are viewed by the architecture in

various granularities. The RAM memory resident objects are viewed in the units of pages. The cache resi­

dent objects on the other hand are viewed in the units of blocks. This argues for the obfuscation boundaries

defined by these units. Hence we obfuscate the sequence of cache-blocks within a page. Any sequence

obfuscation within page level needs to interact with the page management module of the OS. If the ob­

fuscated sequence crosses the page boundary, the permutation function (TT) has to be exposed to the OS.

This is the reason why we cannot obfuscate sequences of pages. In the other direction, permuting the se­

quences of sub-units of cache-blocks seriously affects the locality of cache resulting in severe performance

degradation. Moreover, since the contents of a cache-block are obfuscated, the information leak through

the preserved, original sequence of cache sub-blocks is minimized. Considering a page size of 64KB with

64B cache-blocks, as is the case with Alpha-21264, we get 1024 cache-blocks per page, i.e., 10-bits of

www.manaraa.com

20

obfuscation.

2.4.5 Obfuscating the Contents

In cryptography, the one time pad (OTP), sometimes known as the Vernam cipher, is a theoretically un­

breakable method of encryption where the plaintext is transformed (for example, XOR) with a random pad

of the same length as the plaintext. The structure of the software objects determines the protection granu­

larities once again. We can consider a program as a sequence of fixed sized messages, i.e., cache-blocks.

If we have unique OTPs for each one of the cache-blocks in the software, the contents are completely

protected. However, the storage and management of that many OTPs is highly inefficient. Nonetheless,

we at least have to guarantee that every cache-block within a page has a unique OTP. This is to overcome

the weakness in HIDE (as explained in Section 2.3, Figure 2.1). If the adversary-visible contents of the

memory locations are changed after each permutation (as with unique cache-block OTP per page), then

n-bit permutation is 2" ! strong. This is in contrast with the strength of the order of 2" exhibited by the

original HIDE scheme.

In order to provide a unique OTP per cache-block per page, one option is to generate a random OTP

mask for each cache-block for each page. A more efficient solution, however, is to pre-generate Nb OTPs

for every cache-block within a page (OT P[bi\ masks for 0 < £>,< Nb for a cache with Nh blocks). However,

the association of an OTP with a cache-block is randomized with the %c function. The jtc function can be

chosen differently for each page to provide us with a unique OTP per cache-block. This simplifies the

hardware implementation of content obfuscation unit as well, since each page is processed uniformly in

this unit except for the 7tc function. Hence a program image will need to provide a page of OTPs which

will be used for all its pages. It also needs to specify a unique mapping function %c per page. Since we

already have the reconfigurable permutation logic of Section 2.4.3 in Arc3D, we can use it to implement

the function nc as well. This results in 39-bits per page overhead for the specification of the content

obfuscation. Note that the OTP based content encryption can be easily replaced by any other bijective

function.

www.manaraa.com

21

2.4.6 Obfuscating Temporal Order (Second-Order Address Sequences)

The second-order address sequences are derived from iterative control constructs within a program.

Consider a loop of k instructions which is iterated N times. The expected address sequence in such an exe­

cution is {/(o,o)s^(i,o)Î - - - IFY-1,0)} , {^(0,1)1-^(1,1) » {^(OJV—1)) —1)) • • • I,iv—1)} where

Ii j denotes the i'h instruction in the loop body in the jth loop iteration. In this sequence, if an adversary is

able to tag the boundaries of loop iteration, a strong correlation exists between successive iteration traces:

{1(0,i),I(i,i),- • • J(k-i,i)} and {/(o,/+i),7(i,/+i), • •. J(k-\.i+\)}- In fact, instruction 70 occurs in the same rel­

ative order from the loop sequence start point in both (or all) the iterations. This allows an adversary to

incrementally build up information on the sequencing. Whatever sequence ordering is learnt in iteration

I is valid for all the other iterations. The second-order address sequence obfuscation strives to eliminate

such correlations between the order traces from any two iterations.

Interestingly, the second-order address sequence obfuscation is an inherent property of a typical com­

puter architecture implementation. The access pattern we observe outside the CPU is naturally obfuscated

due to various factors like caching, prefetching, and several other prediction mechanisms aimed at im­

proving the performance. But these architecture features are also controllable, directly or indirectly, by

the OS and other layers of software. For example, the adversary could flush the cache after every instruc­

tion execution. This renders the obfuscation effect of cache non-existent. To overcome such OS directed

attacks, it is sufficient to have a reasonably sized protected-cache in the architecture which is privileged

(only accessible to secure processes). We expect a cache of the same size as a page, in our case 64KB,

should be able to mask the effects of loops. Encrypted or content-obfuscated cache-blocks already ob­

fuscate CFGs (within the cache-block). This is because a 64B cache-block contains 16 instructions if we

assume instructions of length 32-bits.

2.5 Arc3D in Operation

We have developed and described all the building blocks of Arc3D in Section 2.4. In this section, we

explain its operation with respect to the software interactions in detail, from software distribution to the

management of a protected process by the OS using the APIs provided by Arc3D.

www.manaraa.com

22

2.5.1 Software Distribution

Arc3D provides both tamper-resistance and IP-protection through obfuscation. Hence, a software

vendor should be able to obfuscate the static image of a binary executable. Moreover, a mechanism to

distribute the static obfuscation configuration from the vendor to Arc3D needs to be supported. This

configuration constitutes the shared secret between the vendor and Arc3D. Trust has to be established

between Arc3D and the vendor in order to share this secret. Once the trust is established, the binary image

along with the relevant configuration can be transferred to Arc3D.

1: E+

2: Et

3: E£ , Identity

S/w Vendor CPU

CA

Figure 2.6 Three Party Trust Model

2.5.1.1 Trust Establishment

We assume that there exist protected elements within the CPU which are accessible only to the archi­

tecture, and not to any other entities. We also assume that every CPU has a unique identity, namely, its

public-private key pair (£Vf. E\T). This key pair is stored in the protected space of the CPU. A TPM's

endorsement key pair constitutes such an identity. Public part of this key pair, Ek+, is distributed to a cer­

tification authority (CA). CA verifies the CPU vendor's authenticity, associates with CPU vendor's

identity and other information (such as model number, part number, etc.). Any party entering a transaction

with the CPU (such as a software vendor) can query the CA with £Vf in order to establish trust in the CPU.

Since CA is a trusted entity, the data provided by CA can also be trusted. This is very similar to the PGP

model of trust establishment and is shown in Figure 2.6.

www.manaraa.com

23

An important point to note here is that the trust establishment and the key management mechanisms

do not constitute the crux of Arc3D architecture. Arc3D could use any model/policy for this purpose. We

use this model for illustration purposes only. It could very well be adapted to use the TPM [52] model.

2.5.1.2 Binary Image Generation

Software vendor receives Ek+ from the CPU. It queries the CA to derive the architecture level specifica­

tions of the CPU, relevant for static obfuscation which include details such as cache-block size, minimum

supported page size. Software vendor generates the binary file targeted at the appropriate cache-block and

page sizes. It generates two sets of random configurations per page. One configuration is to obfuscate the

sequence of cache-block addresses within a page (Tts) and the second configuration is to obfuscate the as­

sociation of OTPs with cache-block address (nCs). The content obfuscation requires the software vendor to

further generate a page sized OTP (OTPs, OTPs[bi\ for all 0 < £>,< Nb). These functions can then be used

along with the FPGA obfuscation unit in a CPU or with a software simulation of its behavior to generate

the obfuscated binary file.

Algorithm 1 Page Obfuscation Function: page-obfuscate

Required Functions
Fobf (confjsel,addr) -4= Reconfigurable Obfuscation Unit
Inputs
OTParr <= array of OTP
pagei <= input page
confseq 4= conf_sel for sequence obfuscation
confcont 4= conf_sel for content obfuscation
Nb <= number of cache blocks in a page

Outputs
page0 <= output of page

Function
for k = 0 to Nb — 1 do

out = Fobf (confseq,k)

I = Fobf (confcont, k)
OTP = OTParr[l\

page0[out] = pagei[k\ (BOTP

end for

Although this kind of obfuscation is applicable to any binary image, the software vendor could enforce

www.manaraa.com

24

Address
Obfuscation

Obf Addr Obf Content

Content
Obfuscation

Figure 2.7 Page Obfuscation Function

www.manaraa.com

25

additional properties on the target CPUs. For instance, it can restrict the distribution only to those machines

which have a certain minimum cache-block size and page size, as both these parameters affect the strength

of obfuscation. A suggested minimum for these parameters is 64B and 64KB respectively. The basis of

static obfuscation is a page obfuscation function (page-obfuscate) which takes an input page, an OTP page,

and configurations for both address-sequence and content obfuscation functions. It produces an obfuscated

output page. The outline of this algorithm is shown in Algorithm-1 and Figure 2.7. The algorithm for static

obfuscation is shown in Algorithm-2.

Algorithm 2 Static Obfuscation Function: st at-obfuscate

Inputs
Np <= number of pages in the binary
Pagearr <= array of pages

Function
p <= temporary page

Generate random page of OTP (OTPs)
for k = 0 to Np — 1 do

if Pagearr[k] to be protected then
Generate random Sseq

Generate random Scont

P^§^arr[k]-Pconf = Ks { Sseq. SCont} ; H MAC
p = page-.ob fuscate(Sseq, Scont ,OTPs, Pagearr [k])
Pagearr[k] = p

end if
end for

For every protected page the software vendor generates Sseq, the configuration for sequence obfus­

cation (corresponding to %), and Srom, the configuration for content obfuscation (corresponding to

It uses page ̂ obfuscate to obfuscate the page, and associate the configuration information with the page.

This is shown in Algorithm-2. Even for pages which are not loaded, an obfuscation function could be

associated. Note that Arc3D needs a standardized mechanism to garner these functions. This could be

done by extending the standard binary format, like ELF, to hold the sections containing the configurations.

The configurations have to be guarded, and hence need to be encrypted before being stored with the binary

image. The software vendor has to generate a key, Ks, specific to this installation to support such encryp­

tion. All page level configurations, Sseq and Scont, are encrypted with this Ks. And HMAC [27] of these

www.manaraa.com

26

encrypted configurations is also generated. HMAC is a keyed hash which will allow Arc3D to detect any

tampering of the encrypted configurations. Let PCOnf represent the encrypted configurations and its HMAC

and let SCONF represent the section containing Pconj of all the pages. The new binary format should carry

encrypted configurations and its HMAC for every protected page. The page containing the cache-block

OTPs also needs to be stored. This page is also encrypted with Ks. Its HMAC is computed as well. A new

section SQTP is created in the binary file and the encrypted OTP page and its HMAC are added to it.

Conventional
Binary Format ^auth Sconf

Reserved

HMAC

Ks {OTP}

Ks {OTP}

HMAC

Reserved

Sections with
Obfuscated pages

Reserved

HMAC

cont

Figure 2.8 Extended Binary Format

Algorithm 3 Software Distribution

1 : Get Ek+ from CPU
2: Contact CA and validate E^+

3: Generate Ks

4: Generate confseq, confront for every page to be protected

5: Generate OTP page
6: Do stat^obfuscate
7: Generate Sauth and add it to binary file

8: Generate Sconf and add it to binary file
9: Generate SQTP and add it to binary file

10: Send the binary file to CPU

In order for the CPU to be able to decrypt the program, it needs the key Ks. This is achieved by

encrypting Ks with E^+ and distributing it along with the software. Now only the CPU with the private

key E\T can decrypt the distributed image to extract Ks. The entry point of the program also needs to

be guarded. Several attacks are possible if the adversary could change the entry point. Hence, the entry

www.manaraa.com

27

point is also encrypted with Ks. Once again we need to use HMAC to detect any tampering. Hence,

Sauth, the authorization section, consists of Ek+{Ks,PCstart},HMAC. These extended sections are shown

in Figure 2.8.

As we have argued earlier, the obfuscation process makes the software tamper resistant. In order to

tamper the software in an undetectable and advantageous manner, the adversary must know the OTP. The

probability of guessing an OTP is very small as we use 645 length OTPs. Note that the encrypted contents

of blocks from a different page do not leak any information about the OTPs. This is so because the z'th

OTP, OTP[bj\ is applied to different blocks %p
s (;') and rcf (z) in two different pages P and P'. Hence this

form of obfuscation is at least as strong as the function guarding the configuration bits. The symmetric

encryption with Ks guards the configuration bits. The symmetric key Ks can be of any arbitrary length.

Its length will have little impact on the Arc3D performance^ shown later). The complete algorithm for

software distribution step is shown in Algorithm-3.

2.5.2 Management of Protected Process

We now explain the OS use of the Arc3D APIs to manage a protected process. We will also show

how seamlessly it can be integrated with the existing systems while providing the guarantees of tamper-

resistance and copy-protection.

2.5.2.1 Starting a Protected Process

Arc3D has two execution modes, (1) protected and (2) normal, which are enforced without necessarily

requiring the OS cooperation. When the OS creates a process corresponding to a protected program, it

has to read the special sections containing Sauth and per-page configuration Pconf • Arc3D has an extended

translation lookaside buffer (TLBxp) in order to load these per-page configurations. The decision whether

to extend the page table entry (PTE) with these configuration is, OS and architecture dependent. We

consider an architecture in which the TLB misses are handled by the software. Hence the OS can maintain

these associations in a data structure different from PTEs. This will be efficient if very few protected

processes (and hence protected pages) exist. This method is equally well applicable to a hardware managed

TLB wherein all the PTEs have to follow the same structure.

www.manaraa.com

28

The OS, before starting the process, has to update extended TLB with Pconf, for each protected page.

Additionally, for every protected page, the OS has to set the protected mode bit P. This will be used by

the architecture to decide whether to use the obfuscation function. Note that by entrusting the OS to set

the P bit, we have not compromised any security. The OS does not gain any information or advantage by

misrepresenting the P bit. For example, by misrepresenting a protected page as unprotected, the execution

sequence will fail as both instructions and address sequences will appear to be corrupted. This is followed

by the OS providing Arc3D with a pointer to SAUTH and a pointer to SQTP-

The OS executes start.prot-process to start the protected process execution. This causes Arc3D to

transition to protected mode. Arc3D decrypts Sauth and checks its validity by generating its HMAC. If

there is any mismatch between the computed and stored HMACs, it raises an exception and goes out of

protected mode. If HMACs match, then Arc3D can start the process execution from PCstart. However, the

address sequence generated at the address bus will expose the function through one-to-one correspon­

dence with the static binary image sequence. This compromises the static obfuscation. As explained in

HIDE [59], the address sequence information suffices to reverse engineer the IP without even knowing the

actual instructions. Hence, Arc3D performs one more level of obfuscation, called dynamic obfuscation, on

protected pages to avoid these scenarios.

Dynamic obfuscation is very similar to the static obfuscation. It consists of two independent obfusca­

tion functions per page, one to obfuscate the sequence of cache-block addresses, and the other to obfuscate

the contents of cache-blocks. When start..prot-process is executed, Arc3D generates an OTP page (OTPd).

This OTPd needs to be stored in memory so that it can be reloaded at a later point after a context switch.

We use the section SQTP to store OTPj. Arc3D has sufficient internal space to hold both OTPs and OTPj

at the same time. It reads SOTP and decrypts OTPs, validates the HMAC, and then loads it into the obfus­

cation engine. It then encrypts OTPd with Ks and generates its HMAC which is appended to SOTP• We

assume that the space for OTPj in the section SQTP has already been allocated at compile time.

Arc3D then scans the TLB and validates Pconf for every protected page that has been loaded in the

main memory. It then generates Dseq and Dcom configurations (corresponding to 7ty and nC(j) for each one

of those pages and appends them to their Pconf • TLBxp which has been extended to hold Pconf, also has

protected space per TLB entry which only Arc3D can access. This space will be used by Arc3D to store

www.manaraa.com

29

the decrypted Sseq, Scont, Dseq, Dcont configurations, so that decryption need not be done for every TLB

access. Arc3D contains temporary buffer of twice the page size to perform the obfuscation. Hence it reads

a complete page from RAM and applies page-obfuscation and then stores it back in RAM. Algorithm for

dynamic obfuscation is shown in Algorithm-4.

Algorithm 4 Dynamic Obfuscation Function: dyn-obfuscate

Inputs
NTLB <= number of TLB entries
Pi <= page to be obfuscated, read from RAM
Po <= obfuscated page
OTPd 4= array of dynamic OTP

Function
for k = 0 to NTLB - 1 do

if TLB [&] .P is set then
if TLB[k].prot = NULL then

Decrypt and validate Pconf

if Dseq,Dcont exist then
p0 = page-unobfuscate(Dseq,Dcont, OTPd,tempi)
Pi = temp0

end if
Generate new Dseq,Dcont

Append it to Pconf
TLB[k].prot = {Su>q.SC(in;.Dsrq• I^com}
Read the page in pi
Po = page-ob fuscate(Dseq,Dcont,OTPd, Pi)
Write back temp0

end if
end if

end for

The TLB[k\.Prot structure is the protected section of TLB entry and is cleared every time a new TLB

entry is written. Hence the function dyruobfuscate is invoked on every TLB miss. If the page has already

been subjected to dynamic obfuscation, Arc3D first performs the inverse operation (deobfuscation). It

then generates new obfuscation configurations to perform dynamic obfuscation. This causes the dynamic

obfuscation functions to be very short lived, i.e., changing on every page fault. It makes reverse engineering

of 7i/) and CD functions extremely unlikely. To ensure such a (jID, CD) refresh on every context switch,

TLB [k] .Prot is cleared for all the entries whenever start-prot-process is called or a protected process is

www.manaraa.com

30

restored. A state register 57/ is allocated to the process and added to Sauth• The usage of this register is

explained in Section 2.5.2.5. Availability of this register puts a limit on total number of protected processes

active at any point in time in Arc3D. After the dynamic obfuscation is done, the process is started from

PCstart as given by Sauth. The steps involved in start-protjprocess are shown in Algorithm-5.

Algorithm 5 start.prot.process

1: Change to protected mode
2: Read SAUTH and validate

3: Read SOTP and validate
4: Generate OTPj and append to SOTP
5: Clear TLB[i].prot for all i
6: Call dyn-obfuscate
7: Allocate 57} to the process and add it to Sauth

8: Set PC tO PCstart

2.5.2.2 Memory Access

Once a process is started it generates a sequence of instruction and data addresses. Like any high

performance architecture, we assume separate TLBs, ITLB and DTLB, for instruction and data. Hence the

loading process explained earlier occurs parallely in both ITLB and DTLB. The TLB is the key component

of the obfuscation unit. The obfuscation functions are applied only during virtual to physical memory

mapping. The address generation procedure is outlined in Algorithm-6. Two stages of F0bf are in the

computation path for the physical address. This makes TLB latency higher than the single cycle latency

of a typical TLB access. Hence, LI caches of both instruction and data are made virtually tagged and

virtually addressed to reduce the performance impact due to TLB latency. The LI cache tags are extended

with a protection bit, which is accessible only to Arc3D. This bit is set whenever the cache line is filled with

data from a protected page. The access to protected cache-blocks is restricted only in protected mode. In

order to have efficient context switching mechanism we use a write-through LI cache. Thus, at any point

in time L2 and LI are in synch.

TLB and LI cache are accessed parallely. TLB is read in two stages. The first stage reads the normal

portion of TLB and the second stage reads the extended and protected portion of TLB. This way the

second stage access can be direct mapped and hence could be energy-efficient. If LI access is a hit,

www.manaraa.com

31

Algorithm 6 TLBxp Access Function: tlbxpjaccess

v-page -<= input virtual page address

v-block <= input virtual block address
p-addr <= output physical address
k <— TLB index of hit and page exists in RAM
if TLB[k].P is set then

p-block — [i^seq • I'dbf i-^seq • V-hiOC'k))
else

p-block = V-block

end if
P-addr = TLB[k\ .p-page + p -block

then TLB access is stopped at stagei. If LI access is a miss, then TLB access proceeds as shown in

the function tlbxp-access. In Arc3D L2 cache is physically tagged and physically addressed. Hence, no

special protection is needed for the L2 cache. On an L2 cache access to an instruction in the middle of a

cache-block, the relative intra-block sequence information is leaked to an observer adversary on the Ll-

L2 cache boundary. Given that for a 64B cache-block size, there are 16 instructions whose sequencing

information is open to exposure. One way to lessen this vulnerability is to have LI cache only issue L2

cache-block addresses. The cache-block offset can be retained by the LI cache for later decoding. Hence

the address traces visible at L1-L2 cache boundary will appear to be L2 cache-block address aligned. This

would increase the latency but as we discuss later, this increase will not be very high. Once the data is

received from the L2 cache or memory, it is XORed with both OTPj and OTPs to get the actual content in

plaintext which is then stored in an LI cache line.

2.5.2.3 Execution

Arc3D has a set of protected registers (REGp) to support protected process execution. This register set

is accessible only in the protected mode. The protected process can use the normal registers to communi­

cate with the OS and other unprotected applications. If two protected processes need to communicate in

a secure way, then they have to use elaborate protocols to establish common obfuscation functions. Data

sharing can also occur through a shared secret embedded into two applications by the software vendor in

advance.

www.manaraa.com

32

2.5.2.4 Interrupt Handling

Only instructions from a protected page can be executed in protected mode. Hence any call to system

services, such as dynamic linked libraries, requires a state change. Any interrupt causes Arc3D to go out

of protected mode. Before transitioning to normal mode, Arc 3D updates PC field in Sauth with the current

PC. Thus a protected process context could be suspended in the background while the interrupt handler is

running in the unprotected mode. When the interrupt handler is done, it can execute ret-prot-process to

return to the protected process. Arc3D takes the PC from Sauth and restarts from that point. This allows for

efficient interrupt handling. But from the interrupt handler, the OS could start other unprotected processes.

This way Arc3D does not have any overhead in a context switch from protected to unprotected processes.

But when the OS wants to load another protected process the current protected process' context must be

saved.

2.5.2.5 Saving and Restoring Protected Context

Arc3D exports save-prot-process API to save the current protected process context. This causes Arc3D

to write Ks{REGp} +HMAC and Sauth into the memory given by the OS. The OS when restoring the

protected process, should provide pointers to these data structures through restore.prot^process. Arc3D

can be enabled to detect replay attacks by including an association of time with the saved contexts. A set

of OTP registers called state OTP registers are required within Arc3D for this purpose. These registers are

the same size as Ks. The number of these registers depends on how many protected processes need to be

supported simultaneously. The startup rot ̂ process allocates a state OTP register ST,. This association index

STi is also stored within Sauth. Each instance of save jprot_process generates a state OTP value OTP[STj\

which is stored in ST. The saved context is encrypted with the key given by the XOR of Ks and OTP[STt],

Symmetrically, an instantiation of restore_prot_process first garners STt and Ks from Sauth- Then the key

OTP[STi] © Ks is used to decrypt the restored context. This mechanism is very similar to the one used in

all the earlier research such as ABYSS and XOM.

www.manaraa.com

33

2.5.2.6 Supporting fork

In order to fork a protected process, the OS has to invoke transfèrent .process API. This causes a

new STi to be allocated to the forked child process. It then makes a copy of process context similar to

save-prot.process handling. Thus the parent and the child processes could be differentiated by Arc3D. The

OS has to make a copy of SOTP for the child process.

2.5.2.7 Exiting a Protected Process

When a protected process finishes execution, the OS has to invoke exitjprot-process API to relinquish

the STi. This is the only resource that limits the number of protected processes allowed in an Arc 3D system.

Hence Arc3D is susceptible to denial-of-service (DOS) kind of attacks.

2.5.2.8 Protected Cache

Arc3D has a protected direct mapped L2 cache of page size, i.e., 64KB. This protected cache is used

to obfuscate the second-order address sequences only for instructions, as temporal order doesn't have any

meaning with respect to data. Whenever there is an IL 1 miss in protected mode, Arc3D sends a request

to L2prot. Since L2prot is on-chip, the access latency will be small. We assume it to be 1 cycle. If there is

a miss in L2prot then L2 is accessed. L2prot is also invalidated whenever a protected process is started or

restored.

2.6 Discussion

2.6.1 Assumptions

In this section we state and justify the underlying assumptions for Arc3D. The first and foremost of our

assumptions is that every Arc3D processor has a unique identity (TPM's EK like identity). Arc3D device

manufacturer can use various methodologies to embed the identity. Silicon Physical Random Functions

(PUF) [25] have been proposed for this purpose. IBM's secure crypto-processor [22] provides a mecha­

nism based on packaging for storing secrets within the processor environment. Xilinx [57] in its CPLD

devices uses metal layers and dual access mechanisms to obfuscate the stored secrets.

www.manaraa.com

34

The next issue is the extent of damage due to the exposure of Arc3D identity secret. If an adversary

is able to gain access to the stored secret, then all the programs that were distributed for that particular

instance of Arc3D could be decrypted. Once the program plaintext is obtained it can be executed in any

Arc3D machine in unprotected mode. Hence the ability to protect the stored secrets within the architecture

is of paramount importance in Arc3D design. However, the programs distributed to and encrypted for other

Arc3D platforms are not compromised by the exposure of the secrets of a given platform.

2.6.2 Attack Scenarios

In this section we argue that Arc3D achieves our initial goals, namely, copy-protection, tamper-

resistance and IP-protection. Several attacks causing information leak in various dimensions could be

combined to achieve the adversary's goal. These attacks could be classified into two categories — attacks

that target Arc3D to manipulate its control or reveal its secrets. If the adversary is successful in either

getting the stored secret (E*-) or in changing the control logic, the security assurances built upon Arc3D

could be breached. But these type of attacks have to be based on hardware, as there are no software con­

trol handles into Arc3D. There are several possible hardware attacks, like Power Profile Analysis attacks,

Electro magnetic signal attacks. The scope of this thesis is not to provide solutions to these attacks. Hence

we assume that Arc3D is designed with resistance to these hardware attacks.

The second type of attacks are white-box attacks. Such an attack tries to modify the interfaces of Arc 3D

to the external world, to modify the control. The guarantees that are provided by Arc3D to the software in

protected mode of execution are 3D obfuscation for protected pages based on the unique identity per CPU.

Protected mode of execution guarantees that the control is not transferred to any unauthorized code (which

is undetected). Arc3D will fault when an instruction from an unprotected page or from a page that was

protected with different Ks is fetched in protected mode. This will prevent attacks of the buffer overflow

kind. 3D obfuscation provides us both IP-protection and tamper-resistance. IP-protection is achieved

because at every stage of its life, the binary image is made to look different, hence reducing the correlation

based information leaks to the maximum extent possible.

Correlation based attacks are the ones where an adversary builds up information about the program

behavior through repeated program executions. Such techniques [33] have been successfully used against

www.manaraa.com

35

commercial secure microcontroller DS5002FP [20]. In Arc3D such attacks are prevented, as the dynamic

obfuscation functions are chosen at random for every process run, which prevents incremental information

gain.

Tampering could be performed by many means. But all of them have to modify the image of the

process. Since every cache-block in every protected page potentially could have a different OTP, the prob­

ability that the adversary could insert a valid content is extremely small. Applications can obfuscate new

pages that are created at run-time by designating them as protected. Applications can further maintain

some form of Message Digest for sensitive data, because obfuscation only makes it harder to make any ed­

ucated guess, while random modification of data is still possible. In the case of instructions, the probability

that a random guess would form a valid instruction at a valid program point is extremely small.

Another form of tampering - splicing attack - uses valid cipher texts from different locations. This

attack is not likely to succeed because every cache-block in every page has a unique OTP and every page

has a unique address obfuscation function. This makes it hard for the adversary to find two cache-blocks

with the same OTP. Another common attack is replay attack, where valid cipher text of a different instance

of the same application is presented (replayed) to the CPU. As we discussed earlier, this attack is prevented

by XORing Ks with a randomly generated OTP which is kept in the Arc3D state. This value is used as a

key to encrypt the protected process' context. Thus when restoring a protected context, Arc3D makes sure

that both Sauth and saved context are from the same run.

When the adversary knows the internals of the underlying architecture, another form of attack is pos­

sible. This form of attack denies resources that are essential for the functioning of the underlying architec­

ture. For example, XOM maintains a session table and has to store a mutating register value per session-id.

This mutating register is used to prevent any replay attacks. This kind of architecture has an inherent lim­

itation on the number of processes it can support, i.e., the scalability issue. Thus an attacker could exhaust

these resources and make the architecture non-functional. This kind of attack is possible in Arc3D as well

on the state OTP register file. We could let the context-save and context-restore be embedded in the storage

root of trust in a TPM like model. Such a model will allow Arc3D to perform in a stateless fashion which

can prevent the resource exhaustion attacks.

www.manaraa.com

36

2.7 Performance Analysis

Since Arc3D seamlessly fits into the existing memory hierarchy as an extended TLB, the latency caused

by Arc3D should be minimal. We used Simplescalar [10] Alpha simulator with memory hierarchy as

shown in Figure 2.2 to do the performance simulation. We did two sets of simulations with different

latency parameters, Alpha 21264 and Intel XSCALE 80200 as shown in Table 2.2.

Table 2.2 Memory Hierarchy Simulation Parameters

Param Alpha 21264 [19] Intel XSCALE 80200 [58]

LI 64KB, 2 way, 64B, 3 eye 32KB, 32-way, 32B, 3 eye

ITLB/ DTLB 128 fully associative, 1 eye 32 fully associative, 1 eye

L2 1MB, 1 way, 16 eye 256K, 8 way, 8 eye

Memory Lat 130 eye, 4 bytes/cyc Lat 32 eye, 4 bytes/6 eye

Peak B/w 7.1 GB/s 800 MB/s

Page sz 64KB 64KB

Three latencies are added by Arc3D, namely, extended TLB access, increased access time to L2 be­

cause of sending only block address to L2, and latency to read the pages and obfuscate them on every

TLB miss. The first component gets absorbed in LI cache access latency for both the systems, assuming

that the extended TLB access increases the TLB access latency by 2 cycles. The major component is the

reading time of page and writing it back to the memory. Since obfuscation is just an XOR operation, we

can assume it takes one cycle. These facts along with the assumption that these pages are transferred in

and out of Arc3D at the peak memory bandwidth, lead to a latency increase of 12,000 cycles in the case

of Alpha-2164 and 96,000 cycles in the case of XSCALE. The simulation was run with Spec2000 [48]

benchmarks for 2 Billion instructions by fast-forwarding the first 500 million instructions.

Table 2.3 shows that the performance impact on XSCALE 80200 memory hierarchy with higher num­

ber of TLB misses is greater than the impact on Alpha 21264 memory hierarchy. On Alpha 21264 the

performance impact is less than 1% for most of the benchmarks.

www.manaraa.com

37

Table 2.3 Simulation Results

XSCALE 80200

Bench IL1 Missrate DL1 Missrate ITLB Misses DTLB Misses %CPI Increase

bzip 0.0000 0.0225 2 256408 479

eon 0.0000 0.0020 10 12 0.145

gcc 0.0037 0.0510 28 110636 509

twolf 0.0000 0.0728 7 31 0.128

crafty 0.0009 0.0051 6 15627 73.4

gzip 0.0000 0.0231 3 1906 10.6

parser 0.0000 0.0354 5 50663 245

Alpha 21264

Bench IL1 Missrate DL1 Missrate ITLB Misses DTLB Misses %CPI Increase

bzip 0.0000 0.0185 2 113 0.12

eon 0.0000 0.0008 10 12 0.02

gcc 0.0019 0.0272 29 1804 0.97

twolf 0.0000 0.0508 7 31 0.01

crafty 0.0002 0.0123 6 33 0.02

gzip 0.0000 0.0125 3 1906 1.12

parser 0.0000 0.0210 5 1121 0.74

vpr 0.0000 0.0444 5 51 0.05

www.manaraa.com

2.8 Conclusion

Software obfuscation is a key technology in IP-protection. However, software only solutions (such

as compiler transformations of control flow or insertion of redundant basic blocks or data structure trans­

formations) often do not have robustness of crypto methods. Complete control flow obfuscation methods

such as Cloakware [12] have the limitation that they cannot hide the correct control flow information from

the prying eyes of the OS/end user. An additional weakness in these schemes is that observation of re­

peated dynamic execution often gives away the obfuscation secrets (such as control flow ordering or data

structure sequencing).

We propose a minimal architecture, Arc3D, to support efficient obfuscation of both static binary file

system image and dynamic execution traces. This obfuscation covers three aspects: address sequences,

contents, and second-order address sequences (patterns in address sequences exercised by the first level

of loops). We describe the obfuscation algorithm and schema, its hardware needs, and their performance

impact. We also discuss the robustness provided by the proposed obfuscation schema.

A reliable method of distributing obfuscation keys is needed in our system. The same method can

be used for safe and authenticated software distribution to provide copy-protection. A robust obfuscation

also prevents tampering by rejecting a tampered instruction at an adversary desired program point with

an extremely high probability. Hence obfuscation and derivative tamper-resistance provide IP-protection.

Consequently, Arc3D offers complete architecture support for copy-protection and IP-protection, the two

key ingredients of software DRM.

www.manaraa.com

39

CHAPTER 3. TIVA: TRUSTED INTEGRITY VERIFICATION ARCHITECTURE

We are moving towards the era of pervasive computing. The embedded computing devices are every­

where and they need to interact in many insecure ways. Verifying the integrity of the software running on

these devices in such a scenario is an interesting and difficult problem. The problem is simplified if the

verifying entity has access to the original binary image. However, the verifier itself may not be trusted

with the intellectual property built into the software. Hence an acceptable and practical solution would not

reveal the intellectual property (IP) of the verified software, and yet must verify its integrity. We propose

one such novel solution, TIVA, in this chapter.

3.1 Introduction

We are entering the era of pervasive computing where embedded devices have penetrated most spheres

of human activity. These embedded devices carry a wide range of data ranging from sensitive personal

information to military confidential information. Moreover, these devices need to interact frequently with

the insecure world. Hence it is imperative to check frequently whether any malicious tampering of the

software on these devices has occurred.

The different scenarios where such verification is beneficial, for example, are as follows.

• The field officer would like to ensure that her GPS has not been tampered with before entering the

enemy territory. Note that the tampering adversary here is the GPS device. The military needs to

distribute the binary image of the GPS software to the verifier so that the field officer can use the

verifier to ascertain the integrity of the GPS software. The military, however, would be increasing

the risk of compromising the IP of the GPS software by distributing the binary image to the verifier.

Note that the IP adversary is the verifier (and not the device, which is a tampering adversary). The

www.manaraa.com

40

problem then is devising verification engine (verifier) architecture to minimize the risk of exposing

the IP of the distributed GPS software.

• An executive would like to ensure that the software and/or data on her PDA has not been tampered

with. She could have a verifier installed on her laptop to verify the PDA. There exists a conflict

of interest between the software vendor and the PDA user. PDA user (or the laptop version of the

verifier) requires the binary image of the PDA software for verification. The software vendor may

be at the risk of compromising the IP of her software by distributing it to the PDA owner. Thus the

verification architecture should safeguard both the party's interests.

• An organization would like to ensure that their routers were not tampered with. This case is pretty

similar to the earlier one except that the verification would be performed remotely. The verification

architecture should be robust enough to support the remote verification of the systems.

All these scenarios demand IP protection in addition to the mere verification of the software. The

existing solutions like SWATT([2]) and Genuinity([45]) do not address the concern of IP protection and

are very restricted to a certain class of devices hence not generally applicable.

Reverse engineering the low level code into a high level programming language is usually the first

step in determining the embedded IP of a software. Such reverse engineering can lead to software piracy.

Reverse engineering requires disassembling and decompilation of the instruction sequence. Static obfus­

cation techniques address this issue by hiding the instantiated instruction sequence. These obfuscation

techniques embed the correction points for the control flow (the correct instruction sequence) in the image

itself. Such instruction sequence obfuscation, however, applies only to the static program image. The

instantiated instruction sequence is exposed during an execution.

In the case of verification model, the verifier needs the binary image for verification purpose only

and not for execution purpose. In other words, an instantiated control flow path order is not important

to the verifier. The verifier mostly needs only the memory address-content correspondence. Thus any

obfuscation technique which modifies the static sequence of instructions need not embed the image with

correction points. Such an obfuscated image becomes extremely hard to reverse engineer without the

execution address sequence. In TIVA we use a permutation function to generate such an obfuscated image

www.manaraa.com

41

in order to provide the IP protection.

TIVA uses challenge-response protocol between the verifier and the embedded device. In order to

keep the tampering adversary, the device, honest in its responses, the challenge has to be different (unique)

for each verification. TIVA uses a unique permutation function for each verification to calculate a unique

checksum or hash. The novelty of TIVA lies in the fact that it can achieve both IP protection and challenge-

uniqueness through the use of a permutation function. TIVA uses a trusted hardware element in the em­

bedded device to achieve this. But this trusted hardware is different from TCG or secure processors as it

has very minimal hardware overhead.

The main contributions of TIVA are

• identifying the need for IP protection for any practical integrity verification model for embedded

devices

• providing both IP protection and challenge-uniqueness to every verification instantiation through

permutation functions

• a reconfigurable circuit to achieve these permutation functions

The rest of this chapter is organized as follows. Section 3.2 describes the problem and the assumptions

under which the solution is valid. Section 3.3 explains the proposed solution. In Section 3.5 we explain

the overall verification architecture. Section 3.6 discusses strengths and weaknesses of our proposed veri­

fication architecture. Section 3.8 concludes this chapter.

3.2 The Problem

Integrity verification allows the verifier to assert that the binary image, which includes both code as

well as static data, is as expected. Let £ be the device whose binary image needs to be verified, 1? be

the entity which would like verify the integrity and T) be the entity which distributes the software image

I. The interactions between the entities are as follows. Recall that £ is the tampering adversary for the

verification. However V is the DRM adversary against whom we need to protect the software IP. Note that

Visa logical entity that can be physically realized either as a hardware or software unit separate from £

or it could be physically integrated as a software process or hardware unit within £. In the later case, the

www.manaraa.com

42

hardware version of V would have to be secured against observation and tampering from £. The software

process version would have to be obfuscated and hidden within £ along the lines of software watermarking

[17] with unique secret handles for instantiating the verification and for observing the outcome.

• Distribution: Software vendor (D distributes the image I to verifier 1? to verify the integrity of the

corresponding software in the device £.

• IP Protection: 2) trusts the device £ to have sufficient protection mechanism to protect the IP of

image I. Note that £ is protecting the IP of / against possible reverse engineering by 1?. However,

a direct distribution of I to verifier V by software vendor D increases the risk of IP compromise.

V could have simulation/emulation environment or use other mechanisms to reverse-engineer I. To

avoid such a scenario T> would like to ensure that IP of the binary image I is protected despite its

distribution to V.

• Verification: 1/ would like to verify the integrity of the binary image I resident in the device £.

The verification process should be challenge-response based, i.e. the verifier should be able to

generate a challenge at random, and based on the response from £ should be able to assert the

integrity of the image I. The verification process should be robust enough so that it is able to detect

replay and spoofing attacks.

The problem boils down to V verifying the image of £ with respect to I without revealing its IP under

the condition that £ is not tampered with in hardware. The binary image refers to both the code as well as

static data.

3.3 The Solution

The three dimensions of the problem as explained in Section 3.2 are distribution, IP protection, and

verification. We first present the solution to the problems of verification and IP protection. The distribution

problem arises out of this solution.

A straightforward solution to the problem of verification would be to distribute the binary image I to

the verifier V. Hence the verifier can read contents of the £ and compare it against the received image.

But there are several problems with this simple and seemingly perfect scheme.

www.manaraa.com

43

First of all the requirement of IP protection is violated by this scheme, as the verifier 1? could very

well be an attacker who would like to reverse engineer the IP of the image I. Another problem with this

scheme is that it is highly inefficient. It will take time proportional to N*c, where c is the number of cycles

required to read the memory content from the device £ and N is the size of the memory.

Earlier solutions like, Genuinity[45] and SWATT [2], addressed this problem by having a verification

module in the device £. This verification module receives the challenge and provides a response to the

verifier V. This verification logic is critically dependent on the following two dimensions.

1. binary image residing in the memory, I.

2. time to perform the verification, T.

In such a verification module architecture, one solution would be to distribute the hash of the binary

image to the verifier 1?, and to ask the verification logic in the device £ to generate the hash as well,

followed by a comparison of the two hashes. Any modifications in the binary image I will modify the hash

and any modification to the verification logic to misrepresent the hash itself will result in a perceptible

change to T. Since only the hash is available to V, no binary image I is provided, the IP protection

problem is moot. But the drawback of such an approach is that the hash used in the verification is fixed.

Any malicious software running in £ could spoof the verifier by responding with the fixed hash without

having to recompute. The time to perform verification could be easily spoofed by the use of timers.

An alternative would be to request the verification module in the device £ to compute the hash of a

variable subset of the image I. Since verifier *]/ can specify the subset at random the response to every

challenge has to be uniquely calculated to thwart the replay attack. Similar method is used in AOL [1] and

AIM [44]. In this schema though the verifier 1? needs to be able to calculate the correct hash for more

or less any subset of I (every challenge). It requires the entire binary image I for this ability. But this

violates the IP protection requirement of our problem statement.

Yet another solution is to use keyed hash. The verifier V can generate a random key and request the

device £ to generate the hash for that key. This could also avoid the replay attack since the hash value

depends on the key and the key is generated at random by the verifier V. But this model also violates

the IP protection requirement since the verifier V requires the image I in order to calculate the hash for

a randomly generated key. Another drawback especially applicable to a software based remote verifier

www.manaraa.com

44

is the ease of mimicking the device behavior. An impostor device £' could replace £ such that both

are behaviorally equivalent (say a malicious router). Moreover, £' could be computationally much more

powerful than £, able to easily calculate the hash within T from the unmodified original image. In reality,

though, £' could be executing a modified malicious image. Since there is no shared secret between the

verifier V and the device £, any impostor could generate the correct hash, since the hash algorithm, key

and the image are all known to the impostor. This idea was also used by Umesh et al. [47] to attack

Genuinity [45].

Thus the solution to the verification problem is to find an irreversible hash or checksum function which

generates a unique hash "K for every verification. This function should be such that within the given time

T the only way to generate H is to execute the given verification function. Also this function should share

a secret with the verifier. Thus if £ returns the required H within the specified time T then it verifies the

integrity of the device £ as well as the image in £. Thus heart of the solution is in defining the irreversible

hash function f which generates H. This 'J and T together constitute the signature of £ which is verified

against the precomputed values by V. This is the core of our proposed approach to integrity verification.

The required and desirable properties of the irreversible hash generation function T are as follows.

1. It should be very fast and efficient. Hence any change in CJ or its simulated/emulated version should

result in a perceptible and observable change in the response time T.

2. It should depend on the image I as well as on the challenge from the verifier V. Thus for two

distinct challenges, it should generate distinct hash values.

Algorithm 7 Irreversible Hash Function (Pseudocode)

for / = 0 to N — 1 do
hash = hash + (MEM[l\ ® 7t(/))

end for

Algorithm-1 shows such an irreversible hash function. This hash function calculates the checksum

of the image I exor-ed with permutation function Jt. MEM[l] refers to memory contents of the image at

location I. 71 refers to the permutation function which takes in a value from 0 •••N— 1 and returns a value

from 0---N — 1. There are N\ possible distinct permutation functions. Verifier V chooses a particular

www.manaraa.com

45

permutation function through the challenge. Device £ should use that specific permutation function while

calculating the checksum.

The notable characteristic of the hash function shown in Algorithm-1 is that it uses the permutation

function 7t to create the dependency between checksum calculation and verifier's challenge. In contrast,

S WATT [2] used pseudo-random generator and Genuinity [2] used architectural side-effects to introduce

such dependency. The main reason behind our choice of permutation function is the additional capability

of IP protection offered by these permutation functions.

Reverse engineering is the first step in determining IP of the software. In order to reverse engineer

the control flow graph (CFG) of the image has to be reconstituted. This is done by disassembling and

decompilation of the binary image. Various static obfuscation techniques ([35],[43],[16]) try to achieve IP

protection by either obscuring the disassembling stage or decompilation stage. But these techniques are

limited by the fact that the statically obfuscated image should retain the same CFG as its original.

The degree of obfuscation required in our problem is significantly weaker. The verifier 'U needs the

image only for verification or to establish address by address correspondence of the contents of T/'s and

£'s images. The binary image held by V is not executed. This weakens the obfuscation constraints as

follows. Any static obfuscation applied to the binary image I distributed to 'V need not retain the original

CFG. Any permutation of the sequence of the bytes in the binary image I would obfuscate the CFG, in

turn making the reverse engineering extremely difficult. Thus obfuscated image Iabf, which is a permuted

version of the image I could be distributed to the verifier V without compromising its IP. Section 3.6.1

discusses in detail the strength of obfuscation function realized by permutation.

Our solution to the integrity verification problem which combines the permutation function to generate

I0bf and the permutation function to generate hash to form a unified solution is as follows.

1. For every (1?, £), £> generates a permutation function and gives (7td(I), T) to (U.

2. T> secretly embeds in £.

3. For every verification, V generates 7tv and finds 5(7iv,(jy (/))). It then gives 7tv as a challenge to £.

4. £ generates hash using 7t„ and %d and reports it back to CU.

5. V measures the response time T.

www.manaraa.com

46

6. 'V can verify this signature with the precomputed one.

TTu -7Td = {1,3,5,4,2}

Z = {A,B,C,D,E}

l ob i = {E ,C ,A ,B ,D}

Figure 3.1 An Example Hash or Checksum Function T

Figure 3.1 shows an example calculation of checksum by both V and £. In this figure obfuscated

image I0bf is generated as follows. Let M0bf be the memory content of I0bj and M be the memory

content of image I. Then M0bf[%d(i)] = M[z] for every i from 1 to N, where N is the size of the image.

Note that image I is not necessarily limited to only instructions. The presence of static data could also

obscure the disassembly which makes reconstruction of CFG more difficult. In this figure, verifier 1/ has

the obfuscated image I0bf and device £ has the actual image I. V generates nv and calculates hash

using Algorithm-1. Device £ uses the composite permutation function %„(%)) and the actual image I to

calculate the same hash

A permutation function n with N values is AH strong, which is slightly higher than 2N by Sterling's

approximation of a factorial. Hence by choosing sufficiently large N we can reduce the probability of

success through a brute — force attack. By choosing a different permutation function for every verification

we avoid the replay attack. Attack by impostor is avoided as V and £ share the permutation function jy

as the secret. Hence the impostor needs to know to generate H. We have assumed that £ is protected

enough not to reveal its stored secrets.

The distribution of the software image now involves four operations, namely, distributing image I to

the device £, generating the permutation function 7y, generating the obfuscated image I0i,f and distribut­

ing it to the verifier V. Various existing solutions are applicable to this problem. In the case of embedded

www.manaraa.com

47

devices it is most likely that the device vendor distributes the image as well. Hence the device vendor can

maintain the association of jy with the device's unique ID. Whenever the device is purchased or obtained

by the verifier the vendor can generate the obfuscated image using Kj and distribute it with the device.

Whenever the device needs to be updated with newer version of the image I the device vendor has to

generate the corresponding I0bf and distribute it to the verifier V. We use the reconfigurable permution

unit (RPU) described in Section 2.4.3 to achieve this purpose. This reconfigurable permutation unit (RPU)

needs to be embedded into £.

3.4 Area and Delay Estimation of RPU

32 Bits 32 Bits 32 Bits 32 Bits 32 Bits

1 /\ ,rU Inp Bits

Out Bits

•o

Figure 3.2 A Typical Schema for 5x5-LUT

Since we intend to use RPU in the embedded devices it should be both area and delay efficient.

Figure 2.4 shows that RPU has 6 5x5 — LUTs and 3 shifters. Each of these 5x5 — LUTs takes

6 configuration selection bits and 5 input bits. Each LUT can be visualized as having a direct mapped

cache with 64 sets and 32 bit cache line. Each cache line stores the configuration bits and one of which

is chosen by the 6 configuration selection bits. One of these 32 configuration bits is chosen by the

5 input bits. Thus an LUT has a 256B direct mapped cache and a 32-to-l multiplexer. Since all the 5 LUT

use the same configuration selection bits we can group all these direct mapped caches and make it a single

www.manaraa.com

direct mapped cache with 64 sets and 20 byte cache lines. Figure 3.2 shows such a schema.

Table 3.1 Area Estimate of RPU

Technology nm Area mm2

180 1.4526

130 0.7578

70 0.2196

Thus RPU has 6 1.25KB direct mapped caches. Since configuration selection bits will be preloaded,

the delay incurred in accessing these caches would not have any impact on the access time of RPU. We

used CACTI[49] to estimate the area requirement of RPU and Table 3.1 lists the area estimate for various

process technologies. The other components of RPU are shifters and multiplexers. The shifters could be

realized through 2-to-l multiplexers. Since more than 99% of the transistors of RPU are contributed by

the caches the area estimate of RPU could be equated to the area estimate of the caches.

To estimate the access time of RPU we should find the components which contribute to the access

time. Since the configuration selection register will be preloaded the configuration bits will be available to

the multiplexers. The access time can be given as,

TRPU = 3 X 732—ro—1 MUX +2 X TJ- t o-L MUX

We used HSPICE[28] to perform the delay estimation. We used pass transistor logic with appropriate

drivers to design the multiplexers as they are area efficient. In order to optimize the delay of a 32-to-1

multiplexer we designed it as a 3-level multiplexer with first two levels being 4-to-l multiplexers and the

last one being 2-to-l multiplexer. We used TSMC[54] and BPTM[9] models for the simulation. The

results of the simulation are listed in Table 3.2. We will use these delay estimates while estimating the

latency of this functional unit in the following section.

www.manaraa.com

49

Table 3.2 Delay Estimate of RPU

Technology nm Model TYI—TO—\ PS T2- t o - \ PS TRPJJ ns

180 TSMC[54] 1.80 0.46 369 70 1.247

180 TSMC[54] 1.30 0.28 410 80 1.390

180 TSMC[54] 1.55 0.28 340 60 1.140

70 BPTM[9] 0.90 0.20 220 60 0.780

<D

XRPU
W

5: Respond with h a s h

Figure 3.3 Integrity Verification Architecture

www.manaraa.com

50

3.5 Integrity Verification Architecture

In Section 3.3 we outlined our basic solution for embedded device verification. In this section, we

explain TIVA in more details. TIVA uses RPU, the hash function J and the response time T to provide

the solution to the integrity verification problem.

3.5.1 XRPU

As explained in Section 3.3, the IP of image I is protected through 7y. In TIVA this is achieved by

embedding this secret in the device £. Hence £ should have a protected hardware where this secret could

be stored. From Section 2.4.3, we know that RPU has space to store all the 64 possible configurations for

each LUT. Since 7y chooses only one of these configurations we do not need to store all of them. Thus £

should have a special RPU% which stores only the chosen configuration bits which amounts to 120 bytes

for the LUTs and 3 bits for the exchangers.

£ should contain a second RPU^ which is a generic one as explained in Section 2.4.3. This RPU is

loaded with the configuration selection bits generated by V. Since we want to protect the function 7y, we

do not allow the input/output relation of RPU^ to be visible. If 7y is allowed to be observed then I0b/

could be de-obfuscated resulting in loss of its IP. Thus we create a single composite function unit XRPU,

extended RPU, which contains both RPU^ and RPU^. It takes start address and configuration selection

as input and produces the hash as the output. This XRPU generates all 1024 addresses sequentially from

the start address and computes hash = hash + {MEM[addr] @%d{Kv{,CLddr))}. This could be implemented

as microcode or implemented in hardware. Since %v is public its permutation function is known. Hence

given addr and MEM[addr\ © 7y (7tv (addr)) it is easy to derive 7y. Thus XRPU only provides hash as the

output from which 7td cannot be obtained as it is an irreversible function.

3.5.2 Verification

As is the case with any encryption function, the algorithm of RPU is public. The secret is the

configurations bits. Thus 1? could be provided with a simulated version of RPU's algorithm or it could

have a special application-specific hardware unit. To verify the authenticity of the image, V generates the

configuration bits for 7tv randomly and computes the checksum as sum = sum + (MEM[i'] © 7tv(z)). It then

www.manaraa.com

51

li 0,0 ; R0 counter

11 5,0 ; R5 LS word of checksum

11 6,0 ; R6 MS word of checksum

lwz l,st ; Rl starting address

LI : add 1,0,1 ; add counter to address

xrpu 3,0 ; R3 = XRPU(RO)

lwz 2,0(1) ; load the content in R2

xor 3,2,3 ; R3 = R3 xor R2

srawi

i—
1 C
O

 C
O

; R4 = sign bit of R3

addc 5,5,3 ; R5 = R5 + R3

adde 6,6,4 ; R6 = R6 + R4 + Carry

add! 0,0,1 ; R0 = R0 + 1

cmpwi 0,0,1024; is R0 < 1024

It LI ; loop back

Figure 3.4 An Example PPC Micro-Code Implementation of $

sends this 7iv as a challenge to £ and measures the time of verification (response time).

Since XRPU is a hardware unit, the verification function ?, which we assume to be a microcode, could

be very fast. As an example, in PPC the execution of one iteration of loop body for this function takes only

10 cycles assuming XRPU takes 2 cycles per operation. Example pseudocode is shown in Figure 3.4. This

is very fast and efficient. Any small modification in the verification code results in perceptible change in

the time T of the verification process. Thus from the checksum and T, V can establish the integrity of

the binary image in £. Figure 3.3 explains various steps involved in the verification architecture.

3.5.3 Overhead Estimation

Since RPU^ stores only one set of configuration bits area of XRPU « area of RPU, whereas TXRPU =

2 x TRpu as RPU,y and RPU%„ are in series. Using the estimates from Section 3.4 we estimated the area

overhead and latency of XRPU for various commercial embedded processors and the results are tabulated

in Table 3.3. In summary, the area overhead of this scheme is fairly insignificant. We see that for all the

processors the area overhead is less than 1%. Even for low end embedded processor with 10 mm2 of area

the overhead comes out to be 2.2% for 70 nm technology to 14.5% in 180 nm technology. The delay

overhead is more easily hidden through pipelining. The overhead appears to be of the order of two cycles

www.manaraa.com

52

Table 3.3 Latency and Area Overhead Estimation of XRPU

Processor Technology Package mm2 Max Freq MHz % Area Inc Delay ns Latency eye

PXA 255 [30] 0.18^,1.80V 17x17 400 0.50 3.367 2

PXA 26x [30] 0.18/i, 1.30V 13x13 400 0.86 3.367 2

PXA 27x [30] 0.18/4155V 13x13 624 0.86 3.147 2

PXA 800F [30] 0.13/4120V 12x12 312 0.53

PPC 750FX [29] 0.13/41.45 V 21x21 900 0.17

PPC 750CXe [29] 0.18//,1.80V 27x27 700 0.20 3.367 3

for most of these technology nodes, and hence fits nicely into any pipeline.

3.6 Discussion

3.6.1 Obfuscation Strength of Permutation Function (RPU)

In this section we quantify the obfuscation strength of the permutation function implemented using

RPU. The aim of the permutation function is to obfuscate the instruction sequence. The first step in the

process of reverse-engineering is disassembling the binary image. Once the instructions are disassembled

their static sequence is used to reconstruct the control flow graph (CFG). Hence a measure of obfuscation

could be derived from the dissimilarity between the original CFG and the CFG derived from the obfuscated

static image.

The nodes in a CFG correspond to a basic block, a straight-line sequence of instructions. The permu­

tation function rearranges the static instruction sequencing. This results in the modification of many basic

blocks as constructed from the obfuscated/permuted image since there are no corresponding basic blocks

in the original CFG. For instance, even if one instruction from an original CFG basic block is permuted

away past a control instruction (a branch), a new basic block results in the obfuscated CFG. The edges in

the permuted CFG similarly can either be completely new or may have a different source or target basic

www.manaraa.com

53

block. We will call a basic block or edge perturbed if there is no corresponding basic block (in the way of

graph isomorphism accounting for new naming) or edge in the original CFG.

A permutation function that perturbs all the nodes (basic blocks) and edges from the original CFG

achieves complete obfuscation. We define an analytical limited version of this notion that captures the

similarities of the instruction sequences in the original image versus the permuted image. We will estimate

what fraction of sequences of n instructions are preserved (or perturbed) from original to the permuted

image for a large range of values for n. A typical basic block is 5 to 10 instructions long. Such a measure

for n = 5 then estimates the fraction of perturbed basic blocks which constitutes a simplistic measure of

obfuscation. We define such an obfuscation strength measure of size n, OSn, for the permutation function

as follows.

Definition 3.6.1.

Let

I

lobf

N

Sj

Then

—> Unobfuscated binary image

—> Obfuscated binary image

—» Number o f ins t ruc t ions i n I (| / | = \ I 0 b f \)

—> Sequence o f ins t ruc t ions i \ , 12 , . . . , i n i n I

f rom j t h pos i t ion where 1 < j <(N — n + 1)

= % of Sj not in I0bf

Note that in our solution we permute the binary image in units of words (4 bytes). In some architectures

(like x86) the instruction sizes are not fixed. Thus permutation could break some instructions giving rise to

illegal or different instructions. Also the presence of static data in the image could cause the same effect.

Hence this definition of obfuscation strength is very conservative and forms a lower bound.

To understand the definition of our obfuscation strength let us consider an example. Figure 3.5 shows

an example permutation. In this example |/| = \I0bf\ = N = 5 and 5V exist for j = 1,2,3,4. In I0bf only

Sjl exists unobfuscated. Hence OSo =75% and OSn for re > 2 is 100%.

www.manaraa.com

54

%={A,B,C,D,E}

,r = {3,4,2,5,1}

lobf — {E, C, A, B, D}

Figure 3.5 An Example Permutation

As explained in Section 2.4.3 RPU has 39 configuration selection bits. It is highly improbable to

find the obfuscation strength of RPU by exercising all the 239 configurations. We generated 220 random

configurations and found the average obfuscation strength for various sequence sizes. We repeated this

experiment several times to get a statistical validation of our experiment. All the values are listed in

Table 3.4

Table 3.4 Average Obfuscation Strength for 220 Runs

Seed 0% OS7 OSg OSg OSw OSn

0x031245f8 94.74 95.96 96.80 97.35 97.83 98.29 98.63

0x7fc5a2d5 94.75 95.98 96.82 97.37 97.84 98.30 98.64

0x015e8f8c 94.73 95.97 96.80 97.36 97.84 98.29 98.63

0x0023leea 94.74 95.97 96.80 97.36 97.83 98.29 98.63

0x0153d22e 94.75 95.97 96.81 97.36 97.84 98.30 98.64

We have listed the obfuscation strength for sequences of size from 5 to 11 as this happens to be the most

frequent length for basic blocks. We see from Table 3.4 that with at least 95% probability our permutation

function will obfuscate basic blocks with 5 or more instructions. This makes reverse-engineering of CFG

from Iobf as difficult as the permutation function itself, which is « 234 strong.

www.manaraa.com

55

3.6.2 Attack Scenarios

A verification process using TIVA fails if one of following events occurs.

1. A malicious software executing on £ is able to generate the expected checksum H in the expected

response time 1.

2. An impostor system pretending to be £, but with greater computational capabilities than £, is able

to generate the expected checksum 9{ in the expected response time T.

For both these attacks to be successful the malicious software running on the device £ or the impostor

system must know the composite permutation function - Kv. Since only microcode is able to exercise

XRPU and it returns only the checksum value, it is not possible for the software running on the device

to derive 7ij. Thus the composite permutation function becomes as hard as the individual permutation

functions which in our case is « 234 strong.

If an impostor system gets hold of l 0 b f then it is possible to generate the required hash without the

knowledge of Only Jtv and I0b/ suffice. This attack could be avoided in two ways. The verifier V

could make sure that I„b/ is stored securely and trust the device vendor *D to not release /„/,/ to anyone

else. Another method is to extend the verification protocol in the application layer to add a unique ID to

the device £.

Secure storage of secrets in device £ is essential for the functioning of TIVA. Any attack that could

reveal lid would de-obfuscate I„b/ thus compromising its IP. However, storing secrets in hardware is a well

researched topic and solutions like battery-backed RAM as used in IBM's 4758 [22] secure coprocessor

could be used. Ishai et al. [31] proposed circuit techniques to protect circuits against probing attacks. This

could be used to store the secret within the chip resistant to probing attacks.

3.6.3 Flexibility of TIVA

We explained TIVA for 10-bit permutation functions in a 32-bit architecture producing a 64-bit check­

sum, thus handling a memory size of 4KB. But TIVA is not restricted to this memory size. For bigger

memory sizes the verification function could be easily extended to produce 64 bits for every chunk of 4KB.

As we mentioned earlier the checksum or hash generation function proposed in our solution is not ideal.

www.manaraa.com

56

It could be replaced with any other checksum generation function of any size. TIVA is not restricted to

32-bit architectures. It could very well be applied to 8-bit or 16-bit architectures. The microcode for the

verification function could be modified accordingly.

TIVA is not restricted to Von Neumann or Harvard architectures either. As explained in [2] to verify

Von Neumann architectures, in which program and data share the same memory, the device should be

brought into some known state and then verification could be performed. This known state should be the

one which is distributed as binary image to the verifier. Software vendors could distribute multiple such

images for various checkpoints. In the case of Harvard architectures the program and data memory are

separate hence it is sufficient to find the checksum of program memory alone.

3.7 Related Work

Seshadri et al. proposed software only attestation mechanism in SWATT ([2]). A software only so­

lution will incur lower cost than an attestation technique that requires additional hardware. It can also be

used on legacy systems. These were the two major selling points for SWATT. But SWATT is probabilistic,

i.e. it accesses the memory based on a pseudo-random sequence. The verification procedure performs

0(n\ogn) memory accesses, for memory size n, in order to access all of the memory with high probabil­

ity. They generate 16-bit addresses from an 8-bit RC4 pseudo-random number by adding to it the current

value of checksum. This could very well affect the probability distribution of the PRG sequence. The

effect of this change on the probability of accessing every memory location in the system is not studied

in the paper. Additionally, embedded devices in most cases are limited by battery power. Deployment of

such a probabilistic method will incur energy penalty.

Kennell et al. proposed software only solution Genuinity ([45]) to address the problem of autonomous

integrity verification of remote systems. This solution is applicable only to general purpose systems which

expose architectural parameters like TLB miss counters, etc. They used these architectural side effects to

uniquely generate a checksum through the verification procedure. They argued that this checksum cannot

be generated whenever the verification procedure is modified or through other emulated/simulated systems.

But Shankar et al.([47]) proved that such a system based on architectural side effects is not sufficient to

authenticate software.

www.manaraa.com

57

Other solutions like IBM's IMA [46] use trusted hardware support [52] and require sophisticated OS

support to verify the integrity. TPM provides root of trust for storage, for measurement, and for reporting.

But TPM requires Public Key Infrastructure (PKI) and support of sophisticated message authentication

algorithms like HMAC ([27]) to provide these trusts. The requirements of TPM and sophisticated OS

support may be more than what an embedded device could offer. Moreover in IBM's IMA integrity

verification is done only at the loading point. Hence any attack that occurs after the software is loaded

will not be captured. Also the verifier is assumed to know the hash of the software or system configuration

being verified. This again breaks our requirement of IP protection.

Thus earlier proposed solutions did not recognize IP protection as an important dimension in the prob­

lem of integrity verification. Our solution, TIVA, is different from these solutions in various aspects, such

as

• TIVA uses a hardware component to aid the verification.

• TIVA is deterministic, i.e. it accesses each memory location at most once during verification.

• TIVA uses a shared secret between the embedded device and verifier to make simulating/emulating

the device very difficult.

• TIVA uses permutation function to achieve both IP protection and randomness in hash generation

function.

3.8 Conclusions

Embedded devices are omnipresent and pervade all facets of human life. This penetration is likely to

only increase in the future. Their sheer numbers and wide presence make them amenable to tampering.

A tampered sensor could misrepresent its environment (report no bio-hazard particles where there are

some) or a tampered PDA could relay the private data of the user to a third party. Hence verification of

these devices is a relevant problem. However, such verification needs to be extremely efficient and mostly

automated given the sheer numbers of these devices. Moreover, the verification architecture will not be

practical if it compromises the IP of the software running on these devices. We present a novel hardware

architecture TIVA and a schema for such a verification mechanism which satisfies all the requirements

www.manaraa.com

58

of a verification system without compromising the IP of the system being verified. We demonstrate that

the silicon area overhead for TIVA is minimal, 1%, and its time overhead is completely absorbed in the

pipeline.

www.manaraa.com

59

CHAPTER 4. REBEL: RECONFIGURABLE BLOCK ENCRYPTION LOGIC

Existing block cipher function designs have tended to deploy the secret bits in a specific and lim­

ited way. We generalize the role of the secret as truth tables of Boolean gates in a carefully designed

logic schema. Our claims are: these reconfigurable functions are pseudo one-way, and pseudo random

functions. Such a function family is proposed using reconfigurable gates. Based on this function fam­

ily we create REBEL, REconfigurable Block Encryption Logic, which is an LR-Network, and prove its

cryptographic and cryptanalytic security. From cryptographic perspective, this function appears to be a

pseudo-permutation. From cryptanalysis perspective, any observable attribute appears to be a random

process.

4.1 Introduction

Conventional block ciphers ([41, 40]) derive their security from an embedded secret, more commonly

referred to as a key. One of the inputs, key, in each round is secret whereas the round functions themselves

are public. This is a deliberate design decision so that the algorithm can be published as a standard. The

secret, however, is combined with the state in a limited way, as an xor, during a round. The xor based

mixing of the cipher state and the secret leads to some vulnerabilities based on linear and differential

cryptanalysis. The complexity of extracting the secret or its properties is proportional to the non-linearity,

among many other attributes, of the round functions.

We propose a simple yet novel approach wherein the round functions themselves become the secret,

while the function schema is a publicly published algorithm. The intuition is to use reconfigurable gates

as round functions and define their configurations as the secret (or key). Hence the complexity of such

a cryptographic function is derived from the fact that almost all of the round processing is driven by the

secret (truth tables). In a traditional block cipher, the secret is combined with the state with an xor as one

www.manaraa.com

60

of the steps in the round. This xor step is susceptible to linear modeling of the secret and input/output

relationship. When the secret is used as a Boolean gate truth table, it is inherently non-linear, especially

when many levels of such gates are composed, and when each gate is selected to have large minterm

degree.

The advantage of such a reconfigurable block encryption logic (REBEL) is that it is highly time-efficient

when implemented in hardware. The throughput needs of cryptographic blocks when placed in-line into a

processor pipeline in order to support secure execution environments [34, 50]. Another added advantage is

that the the key-space is much larger than the block length of the encryption function. This provides much

higher security levels without having to increase the block length.

4.2 Preliminaries

4.2.1 Notations

• In denotes the set of all «-bit strings, {0,1}".

• For x E hn, denote by x\L the first (left) n bits of x and by x R the last (right) n bits of x.

• Gh
n denotes the set of all ln i—> l\ balanced gates (functions).

• Let % and y be two bit strings of equal length, then x (By denotes their bit-by-bit exclusive-or.

• Let "o" denote function composition operator, i.e., f = go g implies, fix) = g(g(x)).

• Let denote concatenation of binary digits, i.e., p = x»y implies, p is 2N bit string with left N

bits containing % and right N bits containing y.

• Let /M represent the composition of function / «-times i.e., for example /!'3' = / o / o /.

• Let a gate g be defined over n input bits/variables {x \ . x i , A literal I is defined as either an

input variable x, or its complement x*. A minterm is defined as a product of n literals wherein no

variable x, occurs both in complemented and uncomplemented literal form.

• GR represents the action of choosing uniformly at random an element from a set.

www.manaraa.com

61

4.2.2 Properties of G„

4.2.2.1 Cardinality:

4.2.2.2 Closed over complement:

Definition 4.2.1. A set of gates G is closed over complement if M g G G the complement g is also present

in G.

Consider a gate g G Gb
n. Then g is balanced and has equal number of zeros and ones in its truth table.

The truth table of its complement gate g is nothing but the complement of every truth table row of g, i. e.,

every zero of g will become one and every one of g become zero. Hence the number of zeros and ones in g

is still the same as g. Hence g is also balanced and is present in the set Gb
n. Thus the set Gb

n is closed over

complement.

4.2.2.3 Symmetry over Input Variables:

Any gate g can be represented as a boolean function of input variables. Let the set of n input variables

to the gate g is 1(g) = {x\, JE2, ..., xn}. The support set of g, Sup(g) Ç 1(g), which is the set of all input

variables g's value depends on, i.e., if x, 6 Sup(g) then /8x, / 0. A set of gates G is symmetric if for

each g G G, if any pair of input variables in Sup(g) are swapped in the expression for g leading to a gate

g', then g' G G. This property exhibits G's bias towards certain input variables. For example if the set G

has more gates with variable xt than any other variables then the set becomes biased towards x, and any

change in xt is reflected at the output with higher probability than a change in any other input variables.

Definition 4.2.2. A set of gates G is said to be symmetric in input variables ifV g £ G the gate g' obtained

by swapping any two input variables from the support set of g is also present in G.

For g G G„, the balance property dictates that there be 2n_1 minterms. A swap of xt and xj in the

expression for g does not alter the number of l's (minterms). It merely, recodes the minterm locations.

Hence the gate g' derived from g through a swap of two variables will also have 2"_1 minterms, and hence

www.manaraa.com

62

will be balanced, implying g' G Gh
n. Hence, the set Gb

n is symmetric over input variables. Now on, we will

use the term symmetric set G to mean a set symmetric in input variables.

4.2.2.4 Closed over variable-complement:

Definition 4.2.3. We define a set of gates G as closed over input variable-complement if V g G G the gate

g' obtained by complementing all literal instances of an input variable xt is also present in G.

Let g G Gb
n and let g' be obtained by complementing the variable xt. Since g is balanced the number of

l's (minterms) is 2"~1. Each affected minterm gets relocated to a different row in the truth table through

complementing of a literal or xj. However, the number of minterms still remains at 2"_1, and hence g' is

also balanced. Thus Gb is closed over input variable-complement.

4.2.2.5 tn/wf-collision probability:

Definition 4.2.4. For any gate g, the input-collision probability p8
coll is defined as the probability that any

pair of inputs x.x' G/? In s.t. x ^ x', produce the same output, i.e., p8
coll = P[g(x) = g(x') | g]. Note that the

collision probability is averaged over all the input pairs.

For every g £ Gb there are equal number (2"™1) of O's and 1 's. For the collision to happen, the input x

has 2" out of 2" choices and the input x! has 2"_1 — 1 out of 2" — 1 choices. Hence p8
coll = 2"2„ Jj1.

4.2.2.6 gate-collision probability:

Definition 4.2.5. For any given input x £ In gate-collision probability is defined as the probability that

any pair of gates g,g' £R G collide i.e., p^coU (x) = P[g{x) = g' (x) \ x\. Note that the collision probability

is averaged over all the gate pairs.

The set Gb is closed over complement. Hence for every g G Gb the complement gate g is also present

in Gb. Thus every row of the truth table for the set is also balanced and PgCOu(x) = \.

4.2.2.7 sef-collision probability:

Definition 4.2.6. For any set of gates G, the set-collision probability p^oU (x,xr) is defined as the probability

tha t any ga te g ER G col l ides fo r any g iven pa i r o f i npu t s x . x ' G / „ s . t . x / x! , i . e , p ^ M (x . x ') = P[G(x) =

www.manaraa.com

63

G(x') | x. x'}, where G(x) = • Note that the collision probability is averaged over all the gates in the

set G.

(2n — 2 \
2"_1 2) anC* t'1e

/ 2" —2 X
number of gates that does not collide are N-^j = 2x1 ^ J. Hence the probability of colhsion is

G NCOLL _ 2"-1 -1

2"- l '

In other words, the set G% is symmetric with respect to every pair x. x1.

4.2.2.8 input symmetric-controllability :

Definition 4.2.7 (input pairs equivalence class). Let p.p' 6 In be the inputs to the gates in the set G.

We group the pairs of inputs based on their hamming distance, i.e., we define equivalence class as Sd =

{ (p ,p ') \KPiP ') = d} -

Definition 4.2.8. A set of gates G is input symmetric-controllable if the collision probability is same for

any pair of inputs in the same equivalence class.

Lemma 4.2.1. Any symmetric set of gates G and closed over variable complement is input symmetric-

controllable.

Proof. Let (p.p'), (q, q') G Sd then the input-symmetry property requires that P[G(p) = G(p')\ = P[G(q) =

G(q')\. The trivial cases are p = q,p' = q' and p = q',p' = q. We will prove the non-trivial cases. Let

i\, Î2, • • •, id s.t. z'i < i2 < . •. < id represent the d bit-positions in which the pair (p, p') differ and similarly

j\, 72,..., jd s.t. j\ < _/2 < • • • < jd represent the d bit-positions in which the pair (q, q') differ.

C ase {/1. /2- '3• • • • • id} {,/'i • ,/2• ,/3 .id} •

Let k\, lez, • • •, K-d be the bit-positions which do not differ in both the pairs. Then p and q should differ in

at least one of these bit-positions. Let g G G be the gate that collides for the pair (p,p'). Let g' be a gate

obtained by changing the literals of g in the following way. xf = xf 0 p^ © q^, that is, the hterals are

complemented in bit-positions where p and q differ. But G is closed over literal-complement. Hence g' is

a l so p resen t i n the se t G and g ' wi l l co l l ide fo r the pa i r (q , q ') .

www.manaraa.com

64

Case {zi, z*2 > z*3 v • • > 4/} ̂ 1) 7*2,731 • • • ; 7't/} •

Let g 6 G be a gate that collides for the pair (p ,p ') . Let g' be a gate such that the input variables are

swapped in the following way. Variables x8^ = that is the variables at positions 4 and jk are

swapped. But the set G is symmetric. Hence g' is also present in the set G and g' will collide for the pair

W).

Thus for every gate g that collides for the pair (p ,p ') , a gate g ' that collides for the pair [q ,q ') , exists.

Hence the p robab i l i t y o f co l l i s ions a re same o r P[G(p) = G(p ') \ = P[G(q) = G(q ') } .

•

Corollary 4.2.1. Gb
n is input symmetric-controllable.

Proof. Gb
n is symmetric and closed over variable-complement (Properties 4.2.2.3 and 4.2.2.4). •

4.2.2.9 fc-wise sef-collision probability:

k
Let gi represent ith gate that is chosen independently at random from Gb

n. Let kp^oll = Q P[gi(x) = g,(V)]
1=1

be the probability that all the k gates collide for any given pair of inputs x.x' G I„ s.t. x ^ x!. Then

% -

From Property 4.2.2.7 for every pair of inputs x and x' number of gates that collide in the set Gb
n is

Neon. That is, the probability of picking a gate from Gb such that it collides for any input pair x and x! is

jgjjt. And this probability is same for all the choices of the gates since they are chosen independently and

a t r andom. Hence = (p G
c o l l) k -

4.2.2.10 bias propagation:

Let jc G /„ be the input to gate g G Gb
n. Let xt be the ith bit. Let Bm be the bias of the input bits i.e., the

probability that the input bit i collides is | +£,„ and < zin < Then the bias at the output eout is

In order to find how the output bias behaves with respect to the input bias or the bias propagation we

www.manaraa.com

65

Bias Propagation

0.4

increases F=4
0.2

f=10

-0.2

-0.4

-0.4 -0.2 0 0.2 0.4

Figure 4.1 Bias Propagation in re-to-1 Gate

www.manaraa.com

66

differentiate eout with respect to £m. We get,

d£in
n • I £m+ 2

> 0

Thus the slope is a strictly increasing function in £m, and, |EiiI=o < 1. Thus,

(4.2)

In other words the bias decreases as it propagates through the gate. Figure 4.1 illustrates this phe­

nomenon. The figure has output bias plotted against input bias for many values of n. The interesting thing

to observe is, as n increases the bias propagation is very sharp or, the output bias stays closer to 0 for wider

range of input bias.

4.3 Function Family

Definition 4.3.1 (F^ function family). Fn
A' is a IN • IN family of functions that uses I„ i-> I\ reconfigurable

4.3.1 Notations

• Let y be a reconfigurable gate.

• Let x (y) and y (y) be the input and output of the reconfigurable gate respectively.

• Let g(y) be the gate implemented by (or the truth table of) the reconfigurable gate.

• Let T be a In ^ h tree using /„ H-> I\ reconfigurable gates (or zi-ary tree). Then there are \ognN

levels in F (wlog let top level be 1) and ith level has ^ reconfigurable gates (wlog let leftmost gate

be 1). Figure 4.2 shows the diagrammatic representation of this construction.

• Let N[be the number of gates present at ith level.

• Let Y;,y(r) be the reconfigurable gate at i'h level j'h position.

• Let I represent switching of any bit b i.e., P[b J] represent the probability that the bit b switches.

gates as the component gates, where, N = n^log"A"''

www.manaraa.com

67

X\ — N £(n+l) — 2 n • • • • • • • • • • • • • • • *^(N — n+1) — N

y

Figure 4.2 Diagramatic representation of F

www.manaraa.com

68

X

Figure 4.3 Diagrammatic representation of

4.3.2 Construction of F„

is a IN i-> IN family of functions that uses I„ i—> I\ reconfigurable gates as the component gates. F„

has N tree-gates (F) each one producing one output bit using the same input bits. Let F, be the ith tree-gate

(wlog let leftmost be 1). Figure 4.3 shows this construction. In the figure, x represents the N bit input and

yt represent the ith bit of y which is the N bit output.

The configurations of the reconfigurable gates are connected as g(yi j (Tk)) = g("fP . q (Xr)) where,

(— 1 p~ 1

{ZN f + j + k-2)%N={^Nj + q+ r -2)%N

t=1 t=\

and 1 < i. p < logn7V, 1 < j < 1 < q < and 1 < k,r < N. Thus only N unique gate config­

urations are required by F„ . The configurations are chosen uniformly at random from the set Gb
n. The

configurations forms the key to function family.

Thus the key space is = {G | g € Gb
n}N and its cardinality is \%\ = (\Gb\)N• Let K £ and K,- be

the i t h gate configuration. Then the gate configuration assignments are done as, g{y p . q{rr)) = k, where
p-1

i = 1 + (Y, +1 + r — 2)%N and 1 < p < lognN, 1 < q < and 1 < i,r < N.
/— 1

The construction can be explained in simpler terms as follows. Consider N columns and rows

of reconfigurable gates. Then ith column represents the gates of the tree-gate F, and jth row in a column

www.manaraa.com

69

KM Ki Kg

2 --

1 ••

Q

O O Gl 0~K-v 1 I ̂ ognN,i

O O

Kv_l K/\ Kl Kg K3 K4
H h

••71,2

••7i,i

r\ r2 i -> rN

Figure 4.4 Construction of F„ and Key (Gate Configuration) Assignment

www.manaraa.com

70

p-i
corresponds to the qth gate in pth level such that j = +q. In every row there are N reconfigurable

t — 1

gates and are assigned N gates from the key i.e., if represent the reconfigurable gate in ith column and

jth row, then g(jij) = K(;+;-_2)%jv+i. Figure 4.4 shows this construction diagrammatically.

4.3.3 Properties of F„

Definition 4.3.2 (input group). N bits of input x to are divided into equal sized groups of size n bits.

Bits of group — i ofx, denoted by grp(x, i), correspond to the input bits ofith reconfigurable gate in level-1

(top level), bits ; -^(z—l)*zi+2) * * • î

Definition 4.3.3 (Ag-difference operator). Ag is a difference operator that takes two N bit values and

returns the number of groups in which the two inputs differ, i.e., Ag (x.xJ) = i, where i G [0. and x. x! G IN-

Let 8g (jc.V) = {ii, <2- •.. .4} such that 0 < k < Ag(x.x') be the set of group indices where x and x' differ.

Definition 4.3.4 (group hamming distance operator). Given two N bit values x. x' G IN the group hamming

distance operator hAg is defined as, h^g{x.xr) = [htl, hl2. ...hlN/ri\, the sequence of groupwise Hamming

distances in ascending order, i.e., him = h(grp(x,im),grp(x',im)) and hip < hiqfor p < q.

4.3.3.1 M-Balance:

Every output bit of every function f G F^ is balanced. This property is derived from the fact that

every output is produced by a n-ary tree of balanced gates. Let x,y G IN J G F„,y = f{x) and be the

ith output bit. When averaged over all the inputs to the tree-gate F,, f = 0] = P[F,(x) = 1], hence

4.3.3.2 ^-collision probability:

Definition 4.3.5. For the function family Fn
A' key-collision probability pkcoii is defined as the probabil­

ity that for a given input x G IN any pair of keys K. V £R 9Ç produce the same output i.e., ptmii U) =

P[fK(x) = fK> (x) | x]. Note that the probability is averaged over all the pairs of keys K, K'.

To derive this property let us consider each tree individually. Let Ff and Ff be the tree i with keys

K and K' respectively. Then the output of trees collide if Ji0gnN,i (F*) = 71og„ W,I (Ff). Even though inputs

www.manaraa.com

71

to the trees are the same the inputs to the root node are independent. This follows from the gate-collision

property (Property 4.2.2.6) of Gb. Consider two level 1 gates y,\i (T*) and yjj (rf). Let bj and b'j be their

outputs respectively. Then, P[bj = xP\ b'j = y\ = P[bj = x] • P[bj = y] where x,y 6 {0,1}. This is because,

P[b j = 0 fl b ' j = 0] = P[b j and b ' j collide] • P[b j = 0] = \ ' \ — \

P[b j = 0 fl b ' j = 1] = P[b j and b ' j not collide] • P[b j = 0] = \ • \ = \

P[b j = 1 fl b 'j = 0] = P[b j and b 'j not collide] • P[b j = 1] = j • \ = \

P[b j = 1 fl b 'j = 1] = P[b j and b 'j collide] • P[b j = 1] = = \

Thus output bits of every level 1 gates Y/vi (F*) and Yj,i(rf) are independent. Hence the input bits to

the root node are independent. Let g y = g(j i o ê n N, i (Ff)) and g[(= g(Yi0g„AU (F^)) and let xy and x'y be the

inputs to these gates respectively. Then, probability of key-collision for a tree is given by P[gY(xy) = g 'y(x 'y)].

Since both the gates g7 and g'y are balanced the probability of collision is nothing but Since root nodes

1
of every tree are independent, for any input x , Pkcoii (X) =

Thus for any input x G IN

Pkcoll [x) — (4.3)

Another property which follows the fey-collision property is the probability that k inputs ,%2,%*

chosen uniformly at random from IN collide i.e., /K(xz) = fK> (xi) VI <i< k. Since every input is indepen­

dent this is nothing but

4.3.3.3 Tree independence:

For any function / €/; the collision probability for any given pair of inputs, x,x' 6 IN s.t., I/I'
N

is P\ f { x) = f (x ') | (x . x) } = Qf [F;(%) = r,(V) | (x . x)] . W log let x and x! differ in k groups denoted by
Z=1

i k - From the k -wise sef-collision property of G b
n (Property 4.2.2.9) the collision probabilities of

N level-1 gates in each of the groups i\, ij, • • •, ik are independent. Similarly the collision probabilities of

www.manaraa.com

72

— n *^(n+l) — 2n

7i,i

N" —N+1) — N

r7i,Jv

72,1

Tiog„

Figure 4.5 One of the Maximum Controllability Paths in F

N gates in the same group in subsequent levels are also independent. Hence the collision probabilities of

every tree becomes independent. Thus,

p [f { x) =/(V) i (x ,v)]=n p i r ' (x)= rK x ') i (*>•* ')]
i=i

Since each tree is similar in structure, the collision probabilities of every tree is same. Thus,

P[f{x) = /(*') | (x,x')] = (f[F(%) = r(x') I (x,/)])"

www.manaraa.com

73

4.3.3.4 Collision controllability:

Definition 4.3.6. Collision controllability 8C is the maximum probability with which any two inputs x, x! E

IN to the function f &R Fn
v cause collision, i.e., 8C = maxXJT{P[f(x) = f{x')]}.

From Property 4.3.3.3 the collision probabilities of trees are independent and equal. Hence to maxi­

mize the collision probability of /, the collision probability of tree has to maximized. The collision prob­

ability of the tree gate will be maximum if inputs to only one gate on the top level switch, i.e., requiring

minimum number of gates in the tree to collide. Figure 4.5 shows one such path in F. Thus,

2n-l

maxxj{P[r i{x) = r i(x')}} = l-(l-p8
coll)loz»N = l - („N

2n- r

=» 5, = (l-(|^I)'0t'V (4.4)

4.3.3.5 function family collision probability:

Definition 4.3.7. Function family collision probability is the probability that any two inputs x.x! 6#

s.t. x ^ x! cause collision in any junction f €« F„ i.e., p{:oll = P[f{x) = f{x')\. Note that the probability

is averaged over all the input pairs and all the functions in the family.

Let i = Ag(x.x') and p'gwup be the probability that the inputs with Ag = i cause collision. Let Nl
group be

number of inputs with Ag = i. Then,

E
y n n' L* group F group

Pcol l = 2n (2n — 1)

2

4.3.3.6 i#y>M^-symmetry :

The function family exhibits the following input symmetry. Let x.x'.y.y' E IN, f E Fn
v and y =

f(x),y' = fix1).. Let vj be the ith output bit of y and y' respectively. Then,

P\yi = y'i I {x,x')\ = P]yj = y'j | (x,V)]

That is, the probability of colUsion for every output bit is same for any pair of inputs when averaged

over all the functions in the family F„ .

www.manaraa.com

74

Definition 4.3.8. We define the property input-symmetry as the probability of collision of every output bit

being equal for any input change.

The trivial case is when x = x>. We will see the non-trivial case when % / x'. The collision probability

of an output bit is nothing but the collision probability of the corresponding tree F,. From Property 4.3.3.3

the collision probabilities of trees are independent and equal for a given pair of inputs. Hence, P\yt =

y't | {x.x')} = P\y'j = y'j | (x.x')] for any pair of inputs x.x'.

4.3.3.7 output-symmetry:

The function family F„ exhibits the following output symmetry. For a randomly selected instance of /

from , the input transition that causes an output transition from y to / is indistinguishable if the inputs

come from the same group equivalence class. This prevents an adversary from extracting any information

about differential input instances that caused an observed output change, which captures a typical attack

scenario where only the output is observable. We will describe an attack method in Section 4.3.3.10

where through carefully controlled differential input pairs, it may be possible to infer almost all the top

level gates. Output symmetry property prevents that occurrence. The preceding property makes it hard

to distinguish between two vectors that cause ay —» y change. Moreover, even a model that attempts to

ascertain a specific input bit position transitions, —> xj and xj —> x], is also indistinguishable since all the

input bit positions cause the output y —> y' change uniformly. Quantitatively, let f €R F„.

P[xi 110, /)] = P[*j 11 (y,/)]

That is, the probability of switching for every input bit position is same for any pair of observed output

when averaged over all the functions in the family F„.

Definition 4.3.9. A function family F is output-symmetric if for a randomly chosen function instance

f FJor a given output pair (>',/), P[xl \ \ (>>./)] = P[xj î | (y,y')]for all 1 < ij < N.

Definition 4.3.10. Two pairs of inputs (p.pr) and (q,q') are in the same group-equivalence class iff the

following condition holds. h^Xp.p') = h/^Jq.q') which also implies Ag(p. p') = Ag(q.q').

Let f <ER F„ , x,y G I M such that y = f(x). Let x'.x" GR IN such that the pairs (x.x') and (x,x") are in

the same group-equivalence class. Then given that y has changed to / output-symmetry property of F„

www.manaraa.com

75

requires that both these pairs be equally probable to have caused the transition. Let pf [(y.y') \ (x. x')\ be the

probability that y transitions to / given that the input transitions from x to x!. Then from tree independence

property and input-symmetry property (Properties 4.3.3.3 and 4.3.3.6),

Pf[(y,y') 10,*')] = (̂ [r(x) = r(V) | (x,x')])N~h{y,y) (1 -p[r{x) = r(V) | 0,/)])%J,)

Let h't and h" be the hamming distance of the group-i of the pairs {x.x') and (x.x") respectively. Then

the sequence h[,h'2,...,h'N/n is a permutation of the sequence h". h'^..... h'^n. The collision probabilities

of the level-1 (top level) gates are independent of their group numbers as the gates are chosen uniformly

at random for every group position. Hence the collision probabilities of the tree gates for the pairs {x.x')

and (x,x") are equal. Thus,

(4.6)

But,

XKV) i (,,/)] -

Using the result of Equation 4.6

Pf[(x,x') | (y,/)] =

But, P[(;t,x/)] = P[(x,x!')) as both are in the same group-equivalence class. Thus,

\M) \ - p ' ^ y ' ^ rV^

Pf[ix,x')\(y,y')\ = Pf[(x,x")\(y,y')\ (4.7)

The construction of group-equivalence class ensures that every group is equally probable and every

bit within a group is equally probable or in other words the number of transitions for every bit within a

group-equivalence class is same. Hence from Equation 4.7,

I I (%/)] = I | (%/)] (4.8)

www.manaraa.com

76

4.3.3.8 Neighborhood Probability:

Definition 4.3.11 (Key hamming distance). We define the hamming distance of key K and V as the

number of gate configurations they differ. The operator A/. returns hamming distance of keys K and K'.

In order to use the function family in cryptographic functions neighborhood property needs to be

studied.

Definition 4.3.12 ({dx,dy,<4}-neighborhood probability). Let x.y. K and x'.y1 . K 1 be any two sets s.t

y = /K(x) and / = /v (x'). Let h() be the bit-hamming distance function. Then their neighborhood proba­

bility is defined as p= P[h(y,y') = dy | A^(K. K') = d^ fl h(x.x') = dx\. Note that this probability is

averaged over all the inputs and all possible key pairs.

Deriving a generic expression for {dx,dy, ^-neighborhood probability is very cumbersome. Hence

we will derive only for dk — 1. Consider the case when dx = 0 and dy = 0. Consider a tree F in which only

a level-1 gate is changed. Then,

P [collision in F] =

<

— f [no collision in F]

— f [no collision in top level Pi no collision in subsequent levels]

— f [no collision in top level] • f [no collision in subsequent levels]

!) iog„jv- i)
2" — 1

. (1 .
y2 2" — 1

) log nAT-l

,N

But every configuration in the key is reused p times. Hence,

Pco'u ^ < P [collision in T]^

Note that in the above expression the inequality arises due to the following fact. Not all the p copies

of the same configuration will be present in the top level and as the level where the gate is present increases

www.manaraa.com

77

the collision probability decreases. Hence the collision probability calculated by keeping all the gates in

the top level becomes upper bound.

Similarly,

i <4.9)
dy y ^ ^ ^ 2^

The neighborhood probability for an input change of dx and key hamming distance of 1 can be esti­

mated as follows. From the Property 4.3.3.4 the maximum collision controllability is (1 — (|cr[)lo&lAr)Ar.

Since the key has a hamming distance of 1, configurations would have changed from /K to fKt. When

the configurations are different the collision probability increase from to \. Hence by taking the

upper bound of the collision probabilities of the trees (F) which are affected by the configuration change

we can find upper bound to '. Hence,

Hf-11 < (i -Pcoll

P%TN < (4.10)

The other useful inequality is

(4.H)

This is because the collision probability of every tree is always greater than \ and forms the upper

bound.

4.3.3.9 bias propagation:

From the Property 4.2.2.10 of the set Gh
n the bias at the output of a gate g E Gb

n is less than the input

bias. Thus the bias reduces as it propagates through the gates. In the bias of every tree F is independent.

In a tree there are lognN levels of gates hence the output bias is lesser than the input bias.

www.manaraa.com

78

4.3.3.10 Observability weakness:

One of the main design goals of F„ is to make every output bit as function of all the input bits. The

second design goal is to minimize the number of configurations. These two design goals itself forms the

weakness of the function family. Consider a black box implementation of fK ER • In order to identify

the secret (configurations) the approach would be to generate a pair of inputs x,x' such that they differ

in only one group (say i) i.e., Ag(x,x') = 1. Let y = fK(x).y' = /K(V) be the outputs and r = grp(x,i)

and r' = grp(xi). Let b = y © y' be the difference in the outputs and bj represent j'h bit of b. Then if

bj = 1 then the configuration in YMO"*) = K& differs in rows r and r', i.e., Kfe[r] / K^[r']. The expected

number of \'s in b is nothing but N • (1 — P8
C0u)l°s"N• Hence to find out about the characteristic of all

the N configurations for the rows r and r' a minimum of J—,—ry is needed. Hence by doing this

experiment for all 2"_1 unique pairs of r and r' it is possible to find out which rows are similar and which

rows are different. Once the relationship between the rows are identified the key space reduces to 22N bits.

This is much smaller compared to the actual key space \Gb\N.

4.3.3.11 Strength of f i 2) , f E

Observability: The weakness described in Section 4.3.3.10 arises due to the fact that the inputs to the

top level gates (Yu(r)) are controllable and the transitions (or switching) at the output of top level gates

(y(Yu (r))) are observable at the output of the tree (y(F)). Thus the controllability and observability should

be de-linked, in order to improve the strength of the function. Precisely this is achieved by the function

composition .

In f'2K let x be the input, >• be the output, and z be the output at midpoint i.e., y = f^2\x) and z =

f{x). The observable output y does not provide any information about the switching of any particular

intermediate bit z,- since all of them are equally probable to switch as shown in output-symmetry property

(Property 4.3.3.7). The function family F^ also is input-symmetric (Property 4.3.3.6) hence the adversary

can not control the intermediate bits in a biased manner to observe its effect at the output. Thus the method

used to extract information about top level gates truth table rows as explained in Section 4.3.3.10 is not

applicable to . We believe that given polynomial input output pairs of f(2> deciphering / is an NP-hard

problem. But we do not have a proof for this property at this time.

www.manaraa.com

79

Neighborhood probability dispersion: The composition or in general /•"' decreases (or dis­

perses) the neighborhood collision probability. In effect the composition makes the distribution more

uniform and random. Let y = fjp (x) = /K(z) where z = /K(x). Then

N-1

= L p l h (y>y') = dy\h{z,z') = i\ -P[h(z,z') = i]
i=0

-
i=0

From Equations 4.9, 4.10, and 4.11,

N-1 AF-1
V"i {0,1,1}
L* Pcol l Pcol l — Pcol l Pcol l
i=0 i=0

{0,4,1}
— P col l

Thus,

if'"(/P>) < pL""11 (4.12)

The other way to look at this is using the bias propagation property (Property 4.3.3.9). As more and

more levels of gates are added the bias will be decreasing and the collision probability approaches \ for

every output bit.

4.4 REBEL function family R2
n

N

Definition 4.4.1 (R2N function family). R„ is a hN ^ hh< LR-network [37,23] of f(2) with 4 levels, where

4.4.1 Construction of Rn
2 N

Let K G %_ be the key that chooses the function /K G Let G K be the function defined as follows

Let 5 be a swapping function, such that, s(xjL • x;,,) = x\R • x

en tt

DK G R2n is same as the EK. Figure 4.6 shows the diagrammatic representation of EK and DK.

Then the encryption function EK G R2N is constructed as, EK = o s. The decryption function

www.manaraa.com

80

9K 9K 9K 9K S

V \ R

y\L

4.4.2 Adversary Models

The aim of the adversary in any cryptosystem is obtain an algorithm to extract the secret (or key) of

the family. We define two kinds of adversary models distinguished based on its capabilities.

Definition 4.4.2 (function oracle Of). Oracle Of performs encryption (EK) and decryption (DK) for a

randomly chosen key K G %. Every query to Of is a tuple (x. e) where, x G ION and e G {1,0}. The orcale

returns y = e • EK(x) + ë • DK(x) where y G JIN-

Definition 4.4.3 (unbounded statistics oracle Os). Oracle Os has access to the input-output table for

the entire key-space %. Specifically, the model maintained by by Os, M{Os) consists of a set of triples

{(x.y. K) \X => >'} where x => Y implies that x maps to y with key K. The query to Os is an arbitrary set Q

of input-output pairs, potentially chosen adaptively, i.e., Q = {(%,}') |x.y G IZN} such that \Q\ = lq. The

oracle returns a set of keys Kg which are consistent with the input-output relations in the query set Q. Let

I Kg | = lr-

Definition 4.4.4 (poly time statistics oracle Of). Oracle Of is similar to the unbounded statistics oracle

Os except that it only has polynomial time to build its static model of the input-output table with the

key-space correlation. For instance, it can choose to develop the correlation for a given key K,0 with

respect to polynomially many input, output pairs. Or it can choose to develop this correlation for a

Figure 4.6 Diagrammatic Representation of EK and DK in R]

www.manaraa.com

81

constant number of input-output pairs for polynomially many key values. Hence the cardinality of its

model, \M(Of)\, is polynomially bounded. The query to Of is a set of input-output pairs, Q = {(x. >') |x. y G

/2jv} such that \Q\ = lq. The number of queried input-output pairs lq is of course polynomially bounded due

to the poly time constraint. The oracle returns a set of keys KQfrom within its model which are consistent

with the input-output relations in the query set Q. If none match then an empty set is returned. Let |KQ| = lr.

Definition 4.4.5 (poly-time static adversary). A polynomial time static adversary (PTSA) has access to

both oracles Of and Os. The adversary performs p{N) queries to Of for a polynomial p(N). These queries

help the adversary build a query set Q for Os. The adversary has to decipher the secret (or key) based on

the result of Os.

Definition 4.4.6 (poly-time runtime adversary). A polynomial time runtime adversary (PTRA)has access

only to Of. The adversary performs polynomially in N many queries to Of and based on the input-output

relation has to infer the secret (or the key).

4.4.3 Complexity Analysis (PTRA)

Let x.y G LN and y = EK(x). From the construction of EK,

y\R
= x\L ® /* \x\R) ® /K ® /K \X\L ® /K ^(X|FI)))

In order to derive any information about the key, which is essentially configurations to the reconfig­

urable gates, the adversary has to be able to control the input and observe its effect on the output for these

component gates. The construction of EK ensures that if the input to a gate is controllable then the output

is not observable. Hence, the adversary with polynomially many trials can not learn any information about

the input output relation of component gates.

The only observable effect of fK is its collision. If the adversary chooses a pair such that

Property 4.3.3.4 of F„ the maximum collision probability occurs when the minimum number of gates

on the top level are exercised. Let, x,x' be the input to the function fK, then the collision probability is

maximum if the difference (or change) occurs in only one of the group (Ag(x,x') = 1).

www.manaraa.com

82

The adversary can determine that two rows of all the N top level gates collide if such an event can

be identified. But the existence of f^\x\R) masks input to the second function © /k\x\r))- Let

E be the event such that the adversary can determine that all the N gates collide in two rows r, r'. This

can be considered as partial key extraction, as this information could be used to further reduce the search

space in a brute force attack. Let x\L and zf differ in group i and let grpi operator return the ith group.

Then, P[E\ = cause collision in N gates) fl (r = grpi{x\L © /K(xj j))]. Probability of the event

r = grpi(x\L ® /K2)0|J) is nothing but i.

In order to find E the following experiment is performed. Choose % = x\L • x]R uniformly at random

from the set hx- Choose i G [1,77] at random. Then generate ^ 1 pairs of queries to Of such that xj^

differ with x\L only in bin i. If a collision occurs at the output, the collision could be caused by the first

level gates or the subsequent gates. To verify whether top level has caused the collision generate TV pairs at

random such that bin i has the same values as x\L and x';. If the collision is caused by top level gates then

every pair will collide. If any one of these pairs does not cause collision then the top level gates have not

collided.

Then,

\2 J 2" - 1 2" 2N~n+l

Note that this probability is not affected by the number of trials the adversary is performing, as it is

determined by the properties of Gb.

Once the adversary has identified a collision between rows r and /, the adversary has to guess the

actual values of truth table configuration. And the probability of success is Hence, the probability of

successfully guessing two rows of truth tables in all the N gates is bounded by •

P [identifying two rows r and r' of N gates] <

4.4.4 Statistical Adversary Advantage

In this section, we develop an attack framework for an adversary deploying the statistical oracles Os

and Of.

A few observations are in order. For a given input-output pair (x, y), the probability that the instantiated

key Kinst collides with another key K, i.e., P[EKjnsl (x) = EK(x)} = This follows from the Property 4.3.3.2.

www.manaraa.com

83

I G b \N

Thus the expected number of keys that will collide for any given input-output pairs is ^ and for k

\G b \N

pairs, 2iNk ' ^us with polynomially many input-output pairs (for n = 4, k « 6) the adversary can get

the correct key if the adversary has access to the unbounded statistics oracle Os. However, the unbounded

model M(Os) will take unrealistic space and time resources. Hence, we will use the poly bounded oracle

Of instead.

Once the oracle is limited to build a model consisting of polynomially many tuples (x,y,K), it is very

unlikely that it can provide the key association for a randomly chosen (x,y) by the adversary. Note that the

adversary can evaluate an arbitrary instance of EKjnsl (x) or DKuw (>•) through Of. Hence we do not make any

distinction between chosen plaintext or chosen ciphertext attacks. The adversary has to rely upon Of to

extract any key association with the input-output pairs. The (x,y, K) space is very large, 21N * 12N * |G*|A?.

Hence, a polynomially bounded oracle has negligible probability that any triples held by it that match on

(x,y) pair will also match with respect to the key KM„. This leads to Of's inability to help the adversary.

The most interesting issue here, then, is what other information can Of provide the adversary, even though

it does not contain a consistent (x,y, K) triple. Any such information is useful if it infers a significant

fraction of the key bits.

The neighborhood property of the £K can be exploited by the model in this respect. The reason such

neighborhoods help the adversary is that the oracle does not need to have an exact match for (x,y) in its

model any more (which is an unlikely event as we argued). Even if it contains a triple (x + Ax, y + Ay, K)

whose input-output component is from the neighborhood of the query (x,y), it can report back the key

of this triple, K, to the adversary. The adversary gains significant information about KM« from K since

it is likely that KINST = K + AK. Depending on the size of the neighborhood, AK, the adversary has a

much more tractable problem at hand. The efficiency of this exploration depends on the structure of these

neighborhoods. Figure 4.7 illustrates this issue.

Smaller the neighborhoods, more unlikely it is for the oracle to hold a matching triple in its model

from such a neighborhood of the query. Larger neighborhoods will make it more likely that a matching

triple from such a neighborhood will be found by the oracle. The adversary will, however, then have to

explore the entire neighborhood bubble to determine the full key Kinst. What we will show in this section is

that such neighborhoods do not exist in the proposed function family with large probabilities. This makes

www.manaraa.com

84

Figure 4.7 (x,y, K) Neighborhood Bubbles

www.manaraa.com

85

any experimentation with /K equivalent to a random experiment. In other words, success probabilities for

an adversary even with a poly bounded statistical oracle are almost as good as they would have been with

a random search for the key.

From Properties 4.3.3.8 and 4.3.3.11 we see that the neighborhood probability gets dispersed with

more levels of function compositions. In EK at least 4 levels of function (/K) compositions are there in

both the paths (left and right). Hence the neighborhood probabilities estimated for /K will form the upper

bound for EK.

Definition 4.4.7 (modified poly bounded oracle). We modify the poly bounded Of oracle as follows. On

a query (x,y), it returns a triple within its model 6 M(Of) such that h(x,x^) + h(y,y^) is

minimized over Vz.

Lemma 4.4.1 (statistical adversary advantage). A poly bounded adversary with a poly bounded oracle

has probability at most (, _ (^ |(y•

The proof follows from Equation 4.10 and from the fact that (x.y, K) space has size 22N * 12N * \Gh
n\N.

The main point to note here is that the adversary is almost as well off as it would be in a completely ran­

dom experiment. Hence, such a polynomially resource bounded oracle adds marginally to an adversary's

capability for the REBEL functions due to lack of any non-uniformity.

4.4.5 Resilience to Cryptanalysis

In this section we investigate the resilience of REBEL functions twoards the well known cryptanalysis

methods. First we will show the class of attacks which use the invariance property of system, i.e., the idea

of these attacks is to find the properties of the system which are not dependent or least dependent either on

the secret or the input.

4.4.5.1 Linear Cryptanalysis

Linear cryptanalysis is a general form of cryptanalysis based on finding affine approximations to the

cipher function. The technique [38] has been applied to attack ciphers like FEAL [39] and DES [41].

Linear cryptanalysis exploits the high probability of occurrences of linear expressions involving plain­

text,ciphertext, and sub-key bits. This attack becomes possible on the conventional cipher function design

www.manaraa.com

86

as the key bits are primarily XOR'ed with round inputs. And linear approximations of known components

(S-boxes) in the system further aid the analysis. In the case of REBEL none of these required conditions

are available. Every gate (component gates of tree) is chosen by key and hence no linear approximation is

possible.

4.4.5.2 Differential Cryptanalysis

Differential cryptanalysis [6] exploits the property of difference being propagated from input to the

output of the cipher function. This attack again requires the properties of the known components in the

system (S-boxes) in order to estimate the difference propagation probabilities. In REBEL such an analysis

is not possible as there are no known components in the system. A variant to this attack is impossible

difference attack [7] which again uses the principle of identifying differences that does not propagate from

input to output.

4.4.5.3 Boomerang Attack

This attack [55] relies on the difference analysis of round function properties and existence of some

block in the system which is independent of the input to cipher function. This can be thought of as meet-

in-the middle version of differential cryptanalysis. Again REBEL is resistant as there are no blocks (gates)

in the system that is either independent of key or the input.

4.4.5.4 Sliding Attack

This attack [8] exploits the weakness of the round functions. It assumes that given two pairs P, C and

P'.C' such that P' = f(P) and C' = f(C) then the round function can be deciphered or at least significant

bits of the keys can be extracted. These attacks once again uses the property of round functions being built

using some know components (S-boxes) and key bits being used only in XOR operations.

(2)
In REBEL the round function constitute /* . As shown in Section 4.3.3.11 the round function can not

be deciphered given a polynomial sized set of input output pairs. Hence sliding attack is also ineffective

against REBEL.

www.manaraa.com

87

4.4.6 Implementation :

The implementation of REBEL requires the usage of «-to-1 reconfigurable gates. These reconfigurable

gates are implemented as 2"-to-l multiplexers and hence the size (as well as delay) increases exponentially

with the increase in n. The practicable value of n is 4, as less than that will not have sufficiently rich gate

space, and more than that will have very high area and delay penalty. Table 4.1 lists the properties of two

instances of the REBEL function family.

Table 4.1 Properties of two instances of R2N

Property

H\ 12870 12870

key size (bits) 256 1024

l%l >2^8 > 2 ™

5C ('-(91 " (•-©')"
~ L 5

~ 216
1.075

~ 2̂ 4

4.5 Conclusion

In this chapter we have provided a novel design approach towards constructing block cipher functions

using reconfigurable gates. We also provided detailed analysis of various properties of REBEL function

family.

www.manaraa.com

88

CHAPTER 5. CONCLUSION

Software protection is one of the most important problems in the area of computing. However, software

only solutions (such as compiler transformations of control flow or insertion of redundant basic blocks or

data structure transformations) often do not have robustness of crypto methods. Complete control flow

obfuscation methods have the limitation that they cannot hide the correct control flow information from

the prying eyes of the OS/end user.

We propose a minimal architecture, Arc3D, to support efficient obfuscation of both static binary file

system image and dynamic execution traces. This obfuscation covers three aspects: address sequences,

contents, and second-order address sequences (patterns in address sequences exercised by the first level

of loops). A robust obfuscation also prevents tampering by rejecting a tampered instruction at an ad­

versary desired program point with an extremely high probability. Hence obfuscation and derivative

tamper-resistance provide IP-protection. Consequently, Arc3D offers complete architecture support for

copy-protection and IP-protection.

In TIVA we propose a novel solution to tackle the problem of verification. First we identify the rela­

tionship of IP protection with verification and provide a solution to solve both the problems in Embedded

devices. TIVA verification mechanism satisfies all the requirements of a verification system without com­

promising the IP of the system being verified. We demonstrate that the silicon area overhead for TIVA is

minimal, 1 %, and its time overhead is completely absorbed in the pipeline.

We propose a novel design paradigm of cryptographic functions using reconfigurable gates and prove

its cryptanalytic complexity. The advantages of such a design are manifold. The hardware implementation

of REBEL is much faster when compared to the existing cryptographic functions, and it allows the use

of a much larger secret (key) size than the block size. Since the future computing platforms essentially

will contain some reconfigurable elements this design paradigm could be potentially beneficial. Even more

www.manaraa.com

89

importantly, REBEL seems to be more robust against cryptanalysis than the traditional block ciphers, since

it uses the secrets more effectively.

www.manaraa.com

90

REFERENCES

[1] AOL. The America Online Instant Messenger Application. URL: http://wvw.aol.com
Last Checked: 19 April 2006.

[2] Arvind Seshadri and Adrian Perrig and Leendert van Doom and Pradeep K. Khosla. S WATT:
SoftWare-based ATTestation for Embedded Devices. In IEEE Symposium on Security and Pri­
vacy, pages 272-, 2004. URL: http://doi.ieeecomputersociety.org/10.1109/SECPRI.
2004.1301329 Last Checked: 19 April 2006.

[3] David Aucsmith. Tamper Resistant Software: An Implementation. In Information Hiding, pages
317-333, 1996.

[4] David Aucsmith. Tamper resistant software: An implementation. In Information Hiding, pages
317-333, 1996.

[5] R. Bennett and R. Landauer. Fundamental Physical Limits of Computation. Scientific American,
pages 48-58, July 1985.

[6] Eli Biham and Adi Shamir. Differential Cryptanalysis of DES-like Cryptosystems. J. Cryptology, 4
(l):3-72, 1991.

[7] Eli Biham, Alex Biryukov, and Adi Shamir. Cryptanalysis of Skipjack Reduced to 31 Rounds Using
Impossible Differentials. J. Cryptology, 18(4):291—311, 2005.

[8] Alex Biryukov and David Wagner. Slide attacks. In Fast Software Encryption, pages 245-259, 1999.

[9] BPTM. Berkeley Predictive Technology Model. URL: http://www-device.eecs.berkeley.edu
Last Checked: 19 April 2006.

[10] Doug Burger and Todd M. Austin. The SimpleScalar Tool Set, Version 2.0. Technical Report 1342,
Department of Computer Science, University of Wisconsin-Madison, 1997.

[11] Business Software Alliance. 8th Annual BSA Global Software Piracy Study. Trends in Software
Piracy 1994-2002, 2003. URL: http://global.bsa.org/ Last Checked: 19 April 2006.

[12] Stanley Chow, Yuan Gu, Harold Johnson, and Vladimir A. Zakharov. An Approach to the Obfus­
cation of Control-Flow of Sequential Computer Programs. In Proceedings of International Security
Conference (ISC), pages 144-155. Lecture Notes in Computer Science, 2200, Springer-Verlag, 2001.

[13] Stanley Chow, Philip A. Eisen, Harold Johnson, and Paul C. van Oorschot. White-box cryptography
and an aes implementation. In Selected Areas in Cryptography, pages 250-270, 2002. URL: http:
/ /www. springerlink. com/link. asp?id=umthlwnvl9tdqw8v Last Checked: 19 April 2006.

http://doi.ieeecomputersociety.org/10.1109/SECPRI

www.manaraa.com

91

[14] Christian Collberg and Clark Thomborson and Douglas Low. A Taxonomy of Obfuscating Trans­
formations. Technical Report 148, Department of Computer Science, University of Auckland,
July 1997. URL: http://www.cs.auckland.ac.nz/ ~collberg/Research/Publications/

CoHbergThomborsonLow97a/index.html Last Checked: 19 April 2006.

[15] F. Cohen. Operating System Protection Through Program Evolution. Computers and Security, 12(6):
565-584, October 1993.

[16] Christian S. Collberg and Clark D. Thomborson. Watermarking, Tamper-Proofing, and Obfuscation-
Tools for Software Protection. IEEE Trans. Software Eng., 28(8):735-746, 2002. URL: http:
//dx.doi.org/10.1109/TSE.2002.1027797 Last Checked: 19 April 2006.

[17] Christian S. Collberg and Clark D. Thomborson. Software watermarking: Models and dynamic
embeddings. In POPL, pages 311-324, 1999. URL: http://doi.acm.org/10.1145/292540.
292569 Last Checked: 19 April 2006.

[18] ComputerWeekly.com. U.S. Software Security Takes Off, November 2002. URL: http://www.
conputerweekly.com/Articlell7316.htm Last Checked: 19 April 2006.

[19] Zarka Cvetanovic and Richard E. Kessler. Performance analysis of the Alpha 21264-based Compaq
ES40 system. In ISCA, pages 192-202, 2000. URL: http://doi.acm.org/10.1145/339647.
339680 Last Checked: 19 April 2006.

[20] Dallas Semiconductor. DS5002 Secure Microprocessor Chip, March 2003. URL: http: //pdfserv.
maxim-ic.com/en/ds/DS5002FP.pdf Last Checked: 19 April 2006.

[21] André DeHon. DPGA-Coupled Microprocessors: Commodity ICs for the Early 21st Century. In
Duncan A. Buell and Kenneth L. Pocek, editors, IEEE Workshop on FPGAs for Custom Computing
Machines, pages 31-39, Los Alamitos, CA, 1994. IEEE Computer Society Press.

[22] Joan G. Dyer, Mark Lindemann, Ronald Perez, Reiner Sailer, Leendert van Doom, Sean W.
Smith, and Steve Weingart. Building the IBM 4758 Secure Coprocessor. IEEE Com­
puter, 34(10):57-66, 2001. URL: http://doi.ieeeconputersociety.Org/10.1109/2.955100
Last Checked: 19 April 2006.

[23] H. Feistel. Cryptography and computer privacy. Scientific American, 228(5): 15-23, May 1973.

[24] E. Fredkin and T. Toffoli. Conservative Logic. International Journal of Theoretical Physics, 21(3/4),
April 1982.

[25] Blaise Gassend, Dwaine Clarke, Marten van Dijk, and Srinivas Devadas. Silicon Physical Ran­
dom Functions. In CCS '02: Proceedings of the 9th ACM conference on Computer and communi­
cations security, pages 148-160, New York, NY, USA, 2002. ACM Press. ISBN 1-58113-612-9.
URL: http://doi.acm.org/10.1145/586110.586132 Last Checked: 19 April 2006.

[26] Oded Goldreich and Rafail Ostrovsky. Software Protection and Simulation on Oblivious
RAMs. J. ACM, 43(3):431-473, 1996. URL: http://doi.acm.org/10.1145/233551.233553
Last Checked: 19 April 2006.

[27] HMAC. HMAC: Internet RFC 2104, February 1997. URL: http://www.rfc-archive.org/
getrfc.php?rfc=2104 Last Checked: 19 April 2006.

http://doi.acm.org/10.1145/292540
http://www
http://doi.acm.org/10.1145/339647

www.manaraa.com

92

[28] HSPICE. Star-HSPICE 2001.4 Avant! Corporation.

[29] IBM. IBM Power PC Data Sheets. URL: http://www-306.ibm.com/chips/techlib/techlib.
nsf/products/ Last Checked: 19 April 2006.

[30] INTEL. Intel PCA Processors Data Sheets. URL: http://www.intel.com/design/pca/
applicationsprocessors/index.htm Last Checked: 19 April 2006.

[31] Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware against probing
attacks. In CRYPTO, pages 463-481, 2003. URL: http://springerlink.metapress.com/link.
asp?id=lp3nma6cyx76cuec Last Checked: 19 April 2006.

[32] Markus Kuhn. The TrustNol Cryptoprocessor Concept. Technical Report 1997-04-30, Purdue Uni­
versity, April 1997.

[33] Markus G. Kuhn. Cipher Instruction Search Attack on the Bus-Encryption Security Microcontroller
DS5002FP. IEEE Trans. Computers, 47(10): 1153-1157, 1998.

[34] David Lie, Chandramohan A. Thekkath, Mark Mitchell, Patrick Lincoln, Dan Boneh, John C.
Mitchell, and Mark Horowitz. Architectural Support for Copy and Tamper Resistant Soft­
ware. In ASPLOS, pages 168-177, 2000. URL: http://doi.acm.org/10.1145/356989.357005
Last Checked: 19 April 2006.

[35] Cullen Linn and Saumya K. Debray. Obfuscation of executable code to improve resistance to static
disassembly. In ACM Conference on Computer and Communications Security, pages 290-299, 2003.
URL: http://doi.acm.org/10.1145/948109.948149 Last Checked: 19 April 2006.

[36] Cullen Linn and Saumya K. Debray. Obfuscation of executable code to improve resistance to static
disassembly. In ACM Conference on Computer and Communications Security, pages 290-299, 2003.
URL: http://doi.acm.org/10.1145/948149 Last Checked: 19 April 2006.

[37] Michael Luby and Charles Rackoff. How to construct pseudorandom permutations from pseudoran­
dom functions. SI AM J. Comput., 17(2):373-386, 1988.

[38] Mitsuru Matsui. Linear Cryptoanalysis Method for DES Cipher. In EUROCRYPT, pages 386-397,
1993.

[39] Shoji Miyaguchi. The FEAL Cipher Family. In CRYPTO, pages 627-638, 1990.

[40] National Bureau of Standards. FIPS PUB 197: Advanced Encryption Standard (AES). Federal
Information Processing Standard, Nov 2001.

[41] National Bureau of Standards. FIPS PUB 46-3: Data Encryption Standard (DES). Federal Informa­
tion Processing Standard, May 1999.

[42] NGSCB. Next-generation secure computing base, 2003. URL: http://www.microsoft.com/
ngscb Last Checked: 19 April 2006.

[43] T. Ogsio, Y. Sakabe, M. Soshi, and A. Miyaji. Software obfuscation on a theoretical basis and its
implementation. IEICE Trans, on Fundamentals., E86(A)(1), January 2003.

[44] PyxisSystemsTechnologies. AIM/oscar Protocol Specification: Section 3: Connection Management,
2002. URL: http://www.oilcan.org/oscar/section3.html Last Checked: 19 April 2006.

http://www-306.ibm.com/chips/techlib/techlib
http://springerlink.metapress.com/link

www.manaraa.com

93

[45] Rick Kennell and Leah H. Jamieson. Establishing the Genuinity of Remote Computer Systems. In
12th USENIX Security Symposium, 2003.

[46] Reiner Sailer, Xiaolan Zhang, Trent Jaeger, and Leendert van Doom. Design and implementa­
tion of a tcg-based integrity measurement architecture. In USENIX Security Symposium, pages
223-238, 2004. URL: http://www.usenix.org/publications/library/proceedings/sec04/
tech/sailer.html Last Checked: 19 April 2006.

[47] Umesh Shankar, Monica Chew, and J. D. Tygar. Side effects are not sufficient to au­
thenticate software. In USENIX Security Symposium, pages 89-102, 2004. URL: http:
//www. usenix.org/publications/library/proceedings/sec04/tech/shankar. html

Last Checked: 19 April 2006.

[48] Standard Performance Evaluation Corporation. Specbench: SPEC 2000 Benchmarks Version 1.3.
URL: http://www.specbench.org/osg/cpu2000/ Last Checked: 19 April 2006.

[49] Steven J. E. Wilton and Norman P. Jouppi. An Enhanced Access and Cycle Time model for On-Chip
Caches. In WRL Research Technical Report 93/5, July 1994.

[50] G. Edward Suh, Dwaine E. Clarke, Blaise Gassend, Marten van Dijk, and Srinivas Devadas. Aegis:
architecture for tamper-evident and tamper-resistant processing. In ICS, pages 160-171, 2003.
URL: http://doi.acm.org/10.1145/782814.782838 Last Checked: 19 April 2006.

[51] T. Toffoli. Reversible Computing. Technical Report MIT/LCS/TM151/1980, MIT Laboratory for
Computer Science, 1980.

[52] Trusted Computing Group. Trusted Platform Module, 2003. URL: http://www.
trustedcomputing.org Last Checked: 19 April 2006.

[53] Trusted Platform Module. TPM Design Principles - Version 1.2, October 2003. URL: https:
//www.trustedconputinggroup.org/specs/TPM Last Checked: 19 April 2006.

[54] TSMC. Taiwan Semiconductor Manufacturing Company Ltd. URL: http://www.tsmc.com
Last Checked: 19 April 2006.

[55] David Wagner. The boomerang attack. In Fast Software Encryption, pages 156-170, 1999.

[56] Steve R. White and Liam Comerford. ABYSS: An Architecture for Software Protection. IEEE Trans.
Software Eng., 16(6):619-629, 1990. URL: http://www.conputer.org/tse/tsl990/e0619abs.
htm Last Checked: 19 April 2006.

[57] XCELL Journal Online. Is Your FPGA Design Secure. URL: http://www.xilinx.com/
publications/xcellonline/xcell_47/xc_secure47.htm Last Checked: 19 April 2006.

[58] XSC. Intel 80200 Processor based on Intel XSCALE Microarchitecture Datasheet, January 2003.

[59] Xiaotong Zhuang, Tao Zhang, and Santosh Pande. HIDE: An Infrastructure for efficiently protecting
information leakage on the address bus. In ASPLOS, pages 72-84, 2004. URL: http://doi.acm.
org/10.1145/1024403 Last Checked: 19 April 2006.

http://www
http://www.conputer.org/tse/tsl990/e0619abs
http://doi.acm

www.manaraa.com

94

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my thanks to those who helped me with various aspects

of conducting research and the writing of this thesis. First and foremost, Dr. Akhilesh Tyagi for his guid­

ance, patience and support throughout this research and the writing of this thesis. His insights and words

of encouragement have often inspired me and renewed my hopes for completing my graduate education. I

would also like to thank my committee members for their efforts and contributions to this work.

The people most responsible for my success at higher studies are my parents. They made me under­

stand the importance of education, and guided me through the initial years of schooling. I also thank my

parents and folks for their sustained support despite all the difficulties at home, that helped me see this day.

The technical discussions I had with my lab-mates, Sriram Nadathur, Pramod Rama Rao, Veeren-

dra Allada, Ka-Ming Keung, and Swamy Ponpandi, have helped my research to a great extent. I also

thank my lab-mates and Srivatsan Balasubramanian for their support during my thesis presentation prepa­

ration. I thank my friends, Harisudhakar Vepadharmalingam, Samarth Shetty, Girish Lingappa, Aravind

Velayutham, Venkatesh Selvaraj, Satya Sarippalli, Ganesh T S, Anupreet Khaur, Anantharaman Kalya-

naraman, Kirti Rajagopalan, Srivatsan Balasubramanian, Vishwanath Somashekar, Mahesh Narayanan,

Poomima, Satyadev Nandakumar, Balaji Venkatachalam, S ai Sudhir, Nitin Jose, Lakshmi Narasimhan,

Sruthi Sagar, Sudip Seal and many more, for making my stay at Ames a memorable one.

	2006
	Secure execution environments through reconfigurable lightweight cryptographic components
	Mahadevan Gomathisankaran
	Recommended Citation

	tmp.1410275899.pdf.a7iUP

